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1. Introduction

Systems consists of multiple agents

communication
negotiation cooperation

finish tasks

that can not be solved by a single agent

Advantages: flexible, error tolerance, higher efficiency,

>_/

robustness...




1. Introduction

Applications

Aerospace
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Flocking

Swarming

Foraging
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Production lines RoboCup (Robot World Cup)
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Formation flight -
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Alir traffic control



1. Introduction

TacSat-2 satellite

Constellation of satellites



1. Introduction

Consensus: synchronization, agreement, ...

——an essential problem in the field
of multi-agent application

Distributed control:

characteristics: centralized management
decentralized control

advantages: flexible, easy management,
high performance-price ratio,

high reliability, ...






Output regulation is a control design scheme for
uncertain system. It aims to control the system states
to track reference signals or reject disturbance signals ,
and keep stable for the closed system.

Reference

or Extenal output | Regulate output e
disturbance The external -0 R
J System T3

Controller Plant

Control input u Measure output y




The brief contents on output regulation theory can be seen in following:

[1] E. J. Davison, “The robust control of a servomechanism problem for linear time-

invariant multivariable systems,” IEEE Trans. Automat. Contr., vol. AC-21, pp. 25-34,
Jan. 1976.

[2] B. A. Francis, “The linear multivariable regulator problem,” in SIAM J. Control
Optim., vol. 15, 1977, pp. 486-505.

[3] B. A. Francis and W. M. Wonham, “The internal model principle of control theory,”
Automatica, vol. 12, pp. 457-465, 1976.

Since 1990, Huang J and Isidori A et.al have extended the output
regulation theory to nonlinear system.

[4] J. Huang, W. J. Rugh, “On a nonlinear multivariable servomechanism problem,”
Automatica, vol. 26, pp. 963-972, 1990.

[5] A. Isidori and C. I. Byrnes, Output regulation of nonlinear systems, IEEE Trans.
Automat. Contr., 1990, 35: 131-140.

[6] J Huang, Z Chen.A general framework for tackling the output regulation problem.
IEEE Trans. Automatic Control, 2004, 49(12): 2203-2218



Inner Model Principle is developed since 1970 [7], it
provide a good solution for the output regulation of

linear system.

[7] B. A. Francis, W. M. Wonham. The internal model principle of control theory.
Automatica 1976; 12:457-465.

Consider the followina linear svstem:

W is the state for external system, it satisfy that:



Output regulation is to built

To have the closed system

Satisfy that:
For any initial values:

(1) The system is stable;



Theorem 1. The necessary and sufficient condition for
the existence of output regulation is that (A, B) is
stabilization, (C, A) is detectable, and the linear
matrix eqguation

have solution -




Theorem 2. The necessary and sufficient condition for the
existence of structure stable output regulation is that (A,

B,) isstabilization,, (C,, A,) isdetectable, and the
and the regulator equation

have solutions -

Defination: If the designed regulator for Nominal parameter

{A,, B, Cy, Py, Qy} iseffectivetoeach {A,B,C,P,Q} ina
neighborhood of it, the regulator is called structure stable.




For nonlinear System

W is the external system state




It Is to built output regulator

Satify that the closed system

For any initial values in the neighbourhood of original:
(1) The system is linear approximate stable;




The internal mode principle also was extended to
nonlinear ssystems [5]. The following is the form of

nonlinear regulator equation:

Remark: The necessary and sufficient condition
for the existence of nonlinear output regulation is
that the nonlinear output regulation equation canbe

solved.






3 The Output regulation for multi-agent systems

Motivation

L_eader-following problem is a hotspot issue in coordination
control of multi-agent systems.

Usually we assume that: In practice:

leader is completely < ! > Leader may be not
measurable for some contradictory | completely measurable for
follower agents 1 every other agents

OQutput regulation problem for multi-agent systems

The output regulation problem of controlled system is that

of controlling a plant to track reference signals or reject
disturbance signals.




3 The Output regulation for multi-agent systems

Motivation

In practice, the leader agents are dynamics, and not
all the information is measurable or available In
communication. For example, in pursuing and
formation control problem, the position and speed
states of the leadrs usually constantly change. So it is
Important to design the distributed control based on
distributed estimation for the multi-agent systems.

In recent years, several results about this problem
have been given, for example:




3 The Output regulation for multi-agent systems

Related research

[8] Fax J A, Murray R M, Information flow and cooperative control of vehicle
formations, IEEE Trans. on Automatic Control, 49,1453-1476 (2004).
The authors presented distributed control concerning observer

design for multi-agent systems, and first tackled this problem.

[9] Hong Y G, Hu J, Gao L, Tracking control for multi-agent consensus with an
active leader and variable topology, Automatica, 42(7), 1177-1182 (2006)
A consensus problem for the given multi-agent system with an active leader
was considered.

[10] Hong Y G, Chen G, Bushnell L, Distributed observers design for leader-
following control of multi-agent networks, Automatica, 44, 846-850 (2008).
The distributed controllers and observers were designed for the

second-order follower agents.




3 The Output regulation for multi-agent systems

Related research

[11] Hong Y G, Wang X L, Zhong P, Multi-agent coordination with
general linear models: a distributed output regulation approach,
Proceedings of the 8th CCA, 137-142 (2010)

The distributed output regulation problem of linear multi-agent
systems was presented.
[12] Wang X L, Hong Y G, Huang J, Zhong P, A distributed control
approach to robust output regulation of networked linear systems,
Proceedings of the 8th CCA, 1853-1857 (2010)

Wang and Hong designed a distributed controller to solve the
robust output regulation problem of a networked linear system
with uncertainties.




3 The output regulation for multi-agent systems

Our works:

. Consider the multi-agent systems with general

noninear dynamics.

. Assume that the exosystem Is not measurable
completely for other agents.

. Design the distributed feedback controllers by
solving the distributed nonlinear output regulation
problem and distributed nonlinear robust output
regulation problem of multi-agent systems.



Distributed output regulation problem

Problem Statement

Consider a network system consisting of a leader and N
follower agents

X = f.(X)+0;(x)u +h(x)w, followers

W= s(w),

measured output  «—y = q(w),
and reference signal

active leaders (or
environmental disturbance)

e =X—-Y,,1=12,---,N,

This model will applies to some problem in multi-agent control
+ Consensus control for multi-agent with environmental disturbance
+ Static leader-following problem

+ Active leader-following problem



Distributed output regulation problem

Our control aim is

lime, (t) =0.

t—>-+o0

Design measurements of the external state received
by each agent, and it is related to its neighbors or the
leader as follows

Z :Zaij (Xi _Xj)+bi (Xi - YO)-

jeN;



Distributed output regulation problem

Control Law

(1) distributed static feedback control

u, =3(X,2)

(11) distributed dynamic feedback control
u, =6(v,z),
vV, =17;(v, Z;).

Remark

Compared with the static feedback control, the dynamic
feedback control has the better robustness in the output
regulation problem.



Distributed output regulation problem

Definition

The distributed output regulation problem of system is
solvable with dynamic (static) feedback control, if the
following conditions hold:

a) the equilibrium state of the closed-loop system is
stable, when w=0 .

b) for initial condition (X(0),v(0),w(0)) | such that

lime, (t) =0.

t—>-+o0



Distributed output regulation problem

For static feedback control

The distributed output regulation problem of considered multi-
agent system is solvable with static feedback control law, if and

only if there exist x = z(w),u =c(w), 7(0) =0,c(0) =0, satisfying

% s(w) = f (z(w)) + g(z(w))c(w) +h(z(w))w,

(W) —1®q(w) =0.



Distributed output regulation problem

heorem

For dynamic feedback control

The distributed output regulation problem of considered multi-
agent system is solvable with dynamic feedback control law, if and
only if there exist x = z(w),u =c(w), z(0) =0,c(0) =0, satisfying

g%qu:unmm+g@ﬂmeW+NﬂNmW’
z(w)-1®q(w)=0.

such that the following autonomous system with output

W= s(w), vV =39(V),
u=c(w). Isimmersed intothe system , _ ., and the pairs

o) (o) =0 (g g

IS stabilizable and detectable, respectively.



Problem Statement

Consider the network system is modeled as follows

Xi = fi(x;) + &(x)u + hi(x)w,
W =
o = q(w),

€ = Xf_.yO? I.:]-?Q?'”?N?

)
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Problem Statement

Consider the network system is modeled as follows

i = fi(xi) + gi(xi)ui + hi(x;)w,
w = s(w),
Yo = q(w). )

€& = Xi— Yo, "'::1.'2."”.‘N.‘

where x; and u; represent the position state and control input of the
I-th agent, respectively. w represents the state of the exosystem
w = s(w), yo is the measured output and reference signal, €; is the
regulated output for the /-th agent, which describes the control
target. Assume the functions f;(+), gi(-) and h;(-) are known and
smooth with £,(0) =0, s(w) and g(w) are smooth mappings, with
s(0) = 0 and g(0) = 0.



Problem Statement

Suppose w is not all measurable for every agent, then it cannot be
used in the design. Moreover, y; may not be available for agent /, so
e; cannot be used directly in its design. Therefore we design the
external state measurements received by each agent, and it relative
to its neighbors or the leader as follows:

Zj = Z aij(xi — x;) + bi(x; — yo). (2)
JEN;
Define the following dynamic feedback distributed control law:

Ui = QJ(VJ_-Zf)_-

(3)

Vi = 'T?f(Vf_-Zf)_-

where 6;(v;, z;) and 7;(v;. z;) are Ck(k > 2) mapping. For
convenience, we assume #;(0,0) = 0 and 7;(0,0) = 0.



Remark 1.

Different from conventional output regulation, distributed output
regulation design is mainly based on the external state measurements
z; of the multi-agent system. In fact, it has to collect the information
in a distributed way from its neighbor agents.

Remark 2.

fhi(x;)=0,i=12---, N, the distributed output regulation
nroblem becomes an active leader-following problem, where the
follower agents have to exchange the information of the exosystem
(i.e., the active leader) with their neighbors if they can not directly
get formation from the leader.




Lemma 1.
Consider the system as follows:

y = Ay+aly, z). n
z = A2Z+g2(y.‘z).‘

where y € R". z € R™, A; and A, are constant matrices and all the
eigenvalues of A; have negative real parts, while all the eigenvalues of
A, have zero real parts, gi(-) and gy(-) are C* mappings satisfying

0gi

0z

(0.0)

Then there exist a constant ¢ > 0 and a continuously differentiable
function h(z) for all ||z|| < ¢, such that y = h(z) is the center
manifold for system (4).




Lemma 2.

Suppose y = 7(z) is a center manifold for system (4) at (0,0). Let
(y(t), z(t)) be a solution curve of (4) There exist a neighborhood
U’ of (0,0) and real number p >0, § > 0, such that if

2

(y(0).2(0)) € U°, then

[y(t) = 7(2(6) ]| < pe™Iy(0) = m(z(0))]|

for all £ >0, as long as (y(t). 2(t)) € U°.




Lemma 3.
Suppose the system

x = Ax+Bu, (5)
y = (. (6)

s stabilizable and detectable, then the system is stabilizable by the
dynamic output feedback

u = Mx (7)
X = Ki+Ey. (8)

where M, K and E are the appropriate matrices.




Substituting (6) and (7) into (8) and (5), respectively, yields

()= (e ) 5)

By Lemma 3, the eigenvalues of the matrix
A BM
EC K

are all with negative real parts



Definition 1.

(Poisson stable) In a nonlinear system W = s(w), an initial condition
Wy is said to be Poisson stable if the flow ®3(wp) of the vector field
s(w) is defined for all t € R, and for each neighborhood U of wy and
for each real number T >0, there a time t; > T such that

d; (wo) € U, and a time tp < —T such that &; (wg) € U.




Definition 2.
Consider the two following dynamic systems

x = f(x), xeX,

y = h(x), z€ R™, (10)

and

7 = ,z€L,
: = g(2) z€2 -
y = I(z).y €R",

Then the system (10) is immersed into the system (11) if there exists
a smooth mapping 7 : X — Z, satisfying 7(0) = 0, such that

Ti) = g(r()) )

h(x) = 1(7(x)),

for all x € X.







Then system (1) and the controller (3) can be rewritten as

x = f(x)+g(x)u+h(x)w,
W= s(w), (13)
e = x—1®q(w)
and .
Vo= -r;(v;z). (14

Let By = diag(by, by, - -+, by), the external state measurements (2)
can also be rewritten as

z = Hx — (Byl) @ yo, (15)

where H = L + B;.



Substituting (14) into (13) yields a closed-loop system

X = f(x)+g(x)i(v.z) + h(x)w.

= (v.2)
W = s(w).
e = x-1®q(w)

Then we can obtain f(0) =0, s(0) = 0 and (0) = 0. For
#(0,0) =0 and 5(0,0) = 0, the closed-loop system (16) has an
equilibrium state (x, v,w) = (0,0,0).



Definition 3.

The distributed output regulation problem of system (16) is solvable,

if the following conditions hold
a) the equilibrium state (x, v) = (0,0) of system

x = f(x)+g(x)d(v,z)+h(x)w,
v o= v,z

s stable when w = 0.
b) for any initial condition (x(0), v(0), w(0)), such that

im e(t) =0

[——+00

(17)




Now we give the following assumptions for solving the distributec
output regulation problem.

0 (AL) The leader is globally reachable in G,

0 (A2) The
each Initia

noint W =015 a stable ec

ulibrium of 1 = s{w), anc

condition w(0) is Poisso

1 stable.



According to the Taylor expansion, we can obtain the linear
approximation of the nonlinear system (13). At the equilibrium
(x,w) = (0,0), this approximation system has the following form

x = Ax+ Bu+ Cw.

w = Sw,
e = x—(1®Q)w,
where
of
A= |— B=g(0). C=h(0
x| g(0). (0)
s= |2 = |2
_dW_ w=0 _dW- w=0



Similarly, the distributed dynamic feedback control law (14) can be
approximated as

= FV+Fz
LT i (19)
v = Gv+ G,z
with
Fv — 5)_9 ; Fz — ?_9 ;
V] gm0 02 ,_0,-0
GV — ﬁ- ) GZ — -@- '
V] g0 0z ,_g




Next we will consider the distributed output regulation problem for

the multi-agent system (1). To begin with, we give the following
result.

Theorem 1.

For hypothesis A2, assume that a) in Definition 3 is fulfilled, then the
following statements are equivalent

i) b) in Definition 3 is fulfilled;
i) there exist Cx(k > 2) mapping x = m(w) with 7(0) = 0, and
v = o (w) with ¢(0) = 0, such that

3 5W) = f(7(w)) + g (7 (w))é(a(w).0) + p(x(w))w. (20)
E))—:./S(W) = 1(o(w),0), (21)

m(w)— 1@ q(w) = 0. (22)




Proof. i)—ii)

Using the Taylor expansion, the closed-loop system (16) can be
written as

x = (A+BF,H)x+ BF,v — (BF,By1) ® Qw + Cw + ¢(x, v, w),
Vv = GHx+ G,v—(G,Byl)®@ Qw + o(x, v, w),
W= Sw+i(w),
(23)
where ¢(+), (+) and () are C* mappings with ¢(0.0.0) = 0,
D(0,0,0) =0, (0,0,0) = 0, Dy(0,0,0) = 0, 1/(0) = 0 and
Du(0) = 0.



j)—ii)

From the assumption, a) is fulfilled, then the eigenvalues of the

matrix
( A+ BF,H BF, )

G,H G,

are all with negative real parts. Otherwise, by A2, we know the
eigenvalues of the matrix S are on the imaginary axis. Therefore,
from Lemma 1, there exist continuously differentiable functions 7(w)

and o(w), such that

=

/

(w)

v =o(w)

is the center manifold at (0,0, 0) of the system (23).



) —ii)

Substitute x = 7(w), v = a(w) into the first two equations of (23),
we have

or

o.s(w) = f(a(w)) + g(n(w))fo(w). z(w)) + pla(w))w.

with



) —ii)

Suppose wy is any initial condition of w = s(w), the trajectory
(x(t), v(t), w(t)) of system (16) satisfies

(x(0), v(0),w(0)) = (m(wp), o(wp), wp). In light of A2, for any € > 0
and every T > 0, there exist some t > T, such that

[(x(2) v(t). w(t)) - (=(wo). o (o). wo)]| < e

So every trajectory on the center manifold can not converge to zero.
Thus b) is fulfilled only if

e = x(t) — 1@ q(w(t)) = 0

at t =0, i.e., (22) holds. Therefore, we have 7;(w) = x; = q(w).
Then from the external state measurements form (2), we can
obviously see that z(w) = 0, so the equation (20) and (21) hold.



i)—i)

From the condition (22), we know that

e(t) = x(t) —1®q(w(t)) - [r(w(t)) — 1@ q(w(t))]
= x(t) - m(w(t)).

On the other hand, (20) is satisfied, the mapping

(W)

o(w)

(24)

=

/

X
V

with 7(0) = 0,(0) = 0 is a center manifold for system (16).



i)—i)

Then from Lemma 2, for any p >0, § > 0 and all x(0), w(0) which
sufficiently close to the equilibrium state (x, w) = (0,0), we have

[x(t) = w(w(t))]| < pe™[|x(0) = 7(w(0))].
Thus

im [x() — 7(w(t))] = O,

[—00

.e., lim e(t) =0, so the condition b) is satisfied. The proof is
[—00

completed here.



Theorem 2.

Under A1,A2, the distributed output regulation problem of system
(1) is solvable with a appropriate control law, if and only if there exist
x =m(w), u= c(w) with 7(0) =0, ¢(0) = 0 satisfying

ms(W) = f(m(w)) + g(7(w))c(w) + p(7(w))w.

(25)
m(w) —1®q(w) = 0.
such that the following autonomous system with output
w = s(w).
(w). (26)
u = c(w).
is immersed into the system
v = J(v
( 27)




where 9J(0) = 0,~(0) = 0, for some choice of the matrix N and the

matrices
GV —_ {f:| . Fv — {rf:| )
ov | ,_g ov | ,_g

such that the pair
A 0 B
(in ) (o) s

is stabilizable and the pair
A BF,
(0 H).(O G,,) (29)

s detectable.



Proof: necessity

Suppose the distributed output regulation problem of system (1) is
solvable for the distributed dynamic feedback controller (14).

By Theorem 1, there exist mappings x = 7(w) with 7(0) = 0 and

v =a(w) with ¢(0) = 0, such that the equations (20)-(22) hold. Set
c(w) = f(a(w),0), and substitute it into (20), then the condition
(25) is satisfied for 7(w) and c(w).



Necessity

Let v(v) = 6(v,0), J(v) = n(v,0), observe that y(v) and J(v)

satisfy )
o sw) = da(w)) (30)

c(w) = y(o(w)).

This goes to show that the autonomous system (26) is immersed into
the system (27), where v = a(w) with ¢(0) = 0. Then we have

O 00 a 0

OV | v |

ov v k
L V- v=0 L V- V:{},EZO

v=>0

v=0,z=0



Necessity

According to our hypothesis, the distributed output regulation
problem is solvable, therefore the eigenvalues of the matrix

A+ BF,H BF,
G,H G,

are all with negative real parts. Observe that
A+ BF,H BF, B A 0 B
( G,H Gv>_(GZH Gv>+(o>(FzH Fo),

(2)-(%)om

so the pair (28) is stabilizable, when N = G,, and the pair (29) is
detectable.



Sufficiency

By the conditions, the pair (28) is stabilizable for the chosen matrix
N, and the pair (29) is detectable, so that the pair

A+ BF,H BF, B
NH G, /7 \ 0
is also stabilizable, and the pair

A+ BF,H BF,
(H 0)‘( NH GV)

is detectable for the matrix F,.



Sufficiency

Then by Lemma 3, there exist the matrices M, K. E, such that the

matrix
A+ BF,H BF, B Y
UV = NH G, 0

E(H 0) K
A+ BF,H BF, BM
- NG 0 (31)
EH 0 K

has all eigenvalues with negative real part.



Sufficiency

Now design the controller as follows

u = Mw+7(wn)+Fz
\'/0 = KV{] -+ EZ,
\;"1 = l)(V{}) + Nz.

Combining (32), (15) and (17), when w = 0, we have

x = f(x)+g(x)[Mvy+~(w)+ FHx],

l'f(] — KV[)JFEHX_.
\;"1 = U(Vg)+NHX

(32)

(3



Sufficiency

It is easy to see that the Jacobian matrix of the system (33) can be
written as

A+BF,H BM BF,
V= EH K 0 (34)
NH 0 G,

at (x, vo, 1) = (0,0,0). From the matrix W in (31) has all
eigenvalues with negative real part, the eigenvalues of the matrix (34)
also have negative real part. Therefore, the requirement a) in
Definition 3 is satisfied for the designed controller (32).



Sufficiency

Furthermore, there exist mappings x = 7(w) and u = c(w) with
m(0) =0 and ¢(0) = 0, such that (25) holds, and there exists
vi = 7(w) satisfying

o .
S sw) = v(r(w)), (35)

c(w) = (r(w))

Let [ ) = o(w) = ! . one can see that the equations
Vi T(w)

(20)-(22) hold. Then, by Theorem 1, the requirement b) in
Definition 3 is also fulfilled. So it concludes that the distributed
output regulation problem of system (1) is solvable. This completes
the proof.



Remark 3.

t should be pointed out that the network type of the multi-agent
system considered in Theorem 2 is without restrictions. Namely,
Theorem 2 can be suitable to directed networks as well as undirected
networks of the multi-agent systems.

Remark 4.

Compared with the static feedback control, the dynamic feedback
control has the better robustness in the output regulation problem.
Then the analysis and design of the distributed dynamic feedback
control receive more attention.




Consider a multi-agent system consisting of four following agents
with directed graph described by the Laplacian:

1 -1 0 0

1 -1 0
=110 2 1 : =
00 0 0

and the diagonal matrix for the interconnection between the |

and the following agents is @_ 3

By =

o O O O
_ O O O

o O O
o O = O




The dynamics of the following agents is described as
Xi(t)=u(t), i=1,2734,
and an active leader is modeled as follows

Wl(f) = Wg(t)_.
Wn(t) = —wy(t),

Our control target is to design the distributed dynamic feedback

(37)

controller as the form of (32), so that lim ¢(t) =0, i=1,2,3,4.

[——+00



Furthermore, the autonomous system with outputs (26) can be
immersed into the following system

[Gi 0 0 0 )
0 G, 0 0

0 0 Gsz O
\ 0 0 0 Gy

/Fﬂ 0 0 O

N 0 F 0 O B
u=n~(v)= 0 0 F. 0 v=F,v,
\ 0 0 0 Fy)

0 1 0
Gi=|0 0 1], F=(100), i=1234
0 0



Then we choose matrices K = —[,E = —/, M =1, and

F, —

- —1.8774
0.0122
—0.5900

0.1056

- —2.3321
—0.9282
0.9689
0.3002
0.3261
—0.0498
—0.5329
—0.0721
0.2689
0.1746
0.0858

—0.0774

—0.6256
—1.8655
0.0359
0.1056

—0.5899
—0.0977
0.2958
—2.3131
—0.9197
0.9600
0.3382
0.3431
—0.0677
0.1746
0.0858
—0.0774

—0.0050

—0.6018

—1.7955
0.4016

0.2700
0.3087
—0.0380
—0.5519
—0.0807
0.2778
—2.1955
—0.8594
0.9095
0.7204
0.4349
—0.2543

—0.1953 |
—0.4962
—1.0980
—2.4023

—0.1014
0.0455
0.0615

—0.3773
0.0052
0.2004

—0.9292

—0.0755
0.4783

—2.4774

—0.6313
1:1493




Therefore,
system In t

y Theorem 2, the output regulation pro

nis example is solved. With the initial co

nlem of the

nditions

Xl(O) = 7, XQ(O) = 26 Xg(O) = —0.5, X4(0) = 5,

the trajectories of regulated outputs |
shown in Figure 1, and Figure 2 describes the position tracking
behaviors of the followings.

m(0)=5, wy0)=2,

or the four following agents is



Distributed output regulation problem

4
3 = ® -
: —e,t)
—e,t)
1t —e, | -
0
-1
=2
-3
_4 L
_5 -
_6 L 1 1 1
0 <] 10 15 20 25 30 — 1 L L 1 I
0 5 10 15 20 20 30
time (sec)
time (sec)

\_ AN /

The trajectories of regulated outputs and position tracking for the four followers.







Distributed robust output regulation problem

Problem Statement
Consider a network system as follows

X = f.(x,u,w, uncertainty parameters
W =s(w),
Yo = CI(W),

e =X-Y, 1=12,---)N,

Our control aim is

lime (t)=0, 1=1,2,---,N.

t—>+o0



Distributed robust output regulation problem

Define a virtual regulated output for the iI-th agent

i = Zaij(ei —€;)+b(X —Y,), 1=12,---,N.

jeN;

and design the distributed dynamic feedback control law

u =6(z,e,),
Z _nl(zl’ VI)



Distributed robust output regulation problem

Definition

For a uncertainty parameter ;<D eR" , the
distributed robust output regulation problem of system
IS solvable with dynamic feedback control, if the
following conditions hold:

a) the equilibrium state of the closed-loop system is
robust stable, whenw=0 .

b) for initial condition (x. (0), z. (0), w(0)), such that

lime, (t) =0.

t—>-+o0



Distributed robust output regulation problem

heorem

For a uncertainty parameter < D eR", the distributed robust
output regulation problem of considered multi-agent system is
solvable, if and only if there exist x=7z"(w, ),u=c(w), satisfying

or"(w, )

S(W) = f (72-# (W1 /J), c” (W1 ,Ll), W, ,Ll),

7(w)-1®q(w)=0.
such that the following autonomous system with output

W’u :S‘U(W‘u)’ Z :(D(Z)’
u=c(w). IS Immersed into the system |, _ (2). and the pairs

(A(u) Oj, [B(u)j and (0 H) (A(u) B(u)sz
NH G, 0 0 G
IS stabilizable and detectable, respectively.

z



Distributed robust output regulation problem

An illustrative example

Example. Consider a nonlinear multi-agent system with the
following parameters:

0 0 0 0] 1000
0 1 -10 0100
L= . B, = . =002,
10 1 0000
0 0 -1 1 000 1

an active leader is modeled as

Wy (t) =W, (t)’
Wi, (1) = —w (t).



Distributed robust output regulation problem

The follower agents take the dynamic forms as:
Xl(t) — ul(t)’
X, (1) = 1%, (1) +u, (1),
X (1) = X5 + Uy (1),
X, (t) = U, (),

Our control target is

lime (t)=0, 1=123,4.

t—+o0

with the dynamic feedback control.



Distributed robust output regulation problem

T T T T — 1(t)
—e 1(t) — Xz(t)
—efy & —
—eyft) — 4(t)
—ef) —Y [
1 I 1 I I | I 4 ! L I | !
5 10 15 20 25 30 35 40 0 5 10 15 20 25 3H

time(sec) / \ time(sec)

The trajectories of regulated outputs and position tracking for the four followers.







5 Conclusions

¢ Studied the problem of distributed output regulation
and robust output regulation for the multi-agent
systems with general nonlinear dynamic

*» Suppose the exosystem (the leader or environment
disturbance) can not be measurable completely for
other agents

** Designed the distributed feedback control to make
the considered multi-agent systems to track the
reference or reject disturbance
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