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I. Game-based Control Systems

1= Background
@ Control of Boolean (Genetic Regulatory) Network [1]

[4 [1] A. Datta, A. Choudhary, M.L. Bittner, E.R.
Dougherty, External control in Markovian genetic
regulatory networks: the imperfect information case,
Bioinformatics, Vol. 20, No. 6, 924-930, 2004.

@ Flight Control (Missile Defence System) [2]

[§ [2] C.J. Tomlin, J. Lygeros, S.S. Sastry, A game
theoretic approach to controller design for hybrid
systems, Proc. of IEEE, Vol. 88, No. 7, 2000.

@ Control of Power Systems (Power Grid) [3]

[§ [3] W.W. Weaver, P.T. Krein, Game-theoretic control of
small-scale power systems, IEEE Trans. Power
Delivery, Vol. 24, No. 3, 1560-1567, 2009.
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1 Static Game
Notations:

@ D, ={1,2,-- ,k};
@ Ay = {dili=1,2,--- ,k}, where 5i = Col;(I).

Definition 1.1
A static game G consists of three ingredients:
(i) n players, named py,--- ,p,;
(if) each player p; has k; possible actions, denoted by
xi €Dy, i=1,n;
(iii) n payoff functions for n players respectively as

i =i Xy =1in) =,y i, J=1,,n

(1)
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Definition 1.2
In a static game G,

(1) A setof actions s = (x,--- ,x,), iS a strategy (or

strategy profile) of G. The set of strategies is denoted
by S.

(2) A strategy {x;} is a Nash equilibrium if

Cj(XT’-..77x;.k,-..’x2)2cj(x’f7...’xj,... x*)
j=1,--,n.
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Consider a game G with two players: P, and P»:
@ Actions of Py: D, = {1,2};
@ Actions of P,: D; = {1,2,3}.

Table 1: Payoff bi-matrix

P\P,| I | 2 | 3
1 2,1
2 1,6

(SNIINS)
o
—_

N[

Nash Equilibrium is (1, 2).
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= Antagonistic Games

Definition 1.4

A (static) game G is called an antagonistic game, if
@ there is a partition of players as

Pl UP2 — {plap27' o apn};
©Q there are two payoff functions for two groups:

Py C1<X1,"' axn>;
P2I cz(x1,~~~ ,Xn).

e.g., Missiles vs Anti-missile Missiles.
The game is equivalent to two-player one.
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iz Dynamic Games

Assumptions:
(i) infinitely repeated:

(ii) evolutive strategy:
xi(t+1) :ﬁ(xl(t)7"' ,Xn<t>>, i = 17 , 1.

Payoffs:
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= From Dynamic Game to Control System
Assume (i)antagonistic; (ii) evolutive strategies. Then
from each side P;, (i = 1,2) we have control systems as

x(t+1) =f(x(t),u(t)); x€D,; ucD, (4)
u(i),Il;‘lj())(,17... I, (5)

where
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Il. Semi-tensor Product of Matrices

i Definition of STP
Amxn X Bp><q =7

Definition 2.1
LetA € M,,, and B € M,,,. Denote

t:=lem(n, p).

Then we define the semi-tensor product (STP) of A and B
as

AxB:=(A® 1) (B&1Lp) € Mupmxm-  (6)

y
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= Some Basic Comments
@ Whenn =p,Ax B=AB. Sothe STP is a
generalization of conventional matrix product.
@ When n = rp, denote it by A >, B;
when rn = p, denote it by A <, B.
These two cases are called the multi-dimensional
case, which is particularly important in applications.

@ STP keeps almost all the major properties of the
conventional matrix product unchanged.
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= Examples

T.Letx=1[1 2 3 —1] andY:H.Then
XxY=[1 2]-1+[3 =1]-2=[7 0].

2. Letx =[-1 21 -1 2 3]"andy = [1 2 -2].
Then

cer- [ o) 2o -3
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Example 2.2 (Continued)

3. Let )
1211
A:2312,B:B:ﬂ
3210
Then
[1211}é [1211]:%
AxB = [2312}5 [2312]j
[3210}; [3210]:?
3 4 -3 -5
= |47 -5 -8
5 2 -7 —4
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iz Matrix Expression of Logical Functions
Vector Form of Logical Variables

Definition 2.3

(i) Assume x € D, its vector form is defined as x = &;.

(ii) L € M,, is called a logical matrix, if Col(L) € Ay,
that is,

L=[60,62,-- 8.

Briefly,
L =0 ir, o, i) -

(iii) The set of k x n logical matrices is denoted by L;,..
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iz Matrix Expression of Logical Functions (continued)

Theorem 2.4
Letye Dy, andx; € Dy, i=1,--- ,n,and
y :f(xla’ t )xn)' (7)

Then there exists an unique matrix M; € Ly x«
(k =TT, k;) such that in vector form

y =M X Xi- (8)

M; is called the structure matrix of £, and (8) is the
algebraic form of (7).
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iz Algebraic Form of Logical Control Systems
Algebraic form of (4).

x(t+1) = Lu(t)x(t); x €Dy, ucD,, 9)

where
L € Lpxpg-

17/36



lll. Optimal Control

1= Key Results
Consider (4)(or (9) with performance criterion (5):

Theorem 3.1
(1) The best strategy is state-control periodic.
(2) The best strategy (u*(¢)) satisfies

w(t+1) = g(x(t),u(r)) = Leu(1)x(1), (10)

where L, € L, 4.
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5 Method 1:

Proposition 3.2
Cycle:

(X1, 1) = (2, u2) = - = () = (1, 1)
is called a simple cycle, if

x,-;éxj, 1§l<]<k

| A

Proposition 3.3

For any cycle C there exists a simple cycle C;, such that
the average payoff

¢(Cy) > ¢(C).
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= Method 1 (continued):

(1) Find set of simple cycles;
(ii) Find
¢(C;) = max ¢(Cy).

Cs

(if) Decomposing C: yields a best trajectory and a best
control sequence.
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5> Method 2:
Definition 3.4

LetA,B € L,,«,. The Hamming distance is defined as

dH(A,B) — ZZ|aiJ—biJ\.

i=1 j=1

Find L* (via hill climbing) such that
J(L*) = max J(L,).

Le€Lpxpg

[4 [7]Y. Zhao, Z. Li, D. Cheng, Optimal control of logical
control networks IEEE Trans. Aut. Contr., vol.56, no. 8, pp.
1766-1776.

[4 [8] D. Cheng, Y. Zhao, Y. Mu, Strategy optimization with its
application to dynamic games, Proc. 49th IEEE CDC,
5822-5827, Atlanta, 2010.
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1> Discount Factor

T =" Ne(x(r), u(h)), (11)

where 0 < \ < 1 is the discount factor.

Consider (4)(or (9) with performance criterion (11). If the
optimal control exists, then Theorem 3.1 holds.

[4 [9] D. Cheng, Y. Zhao, J. Liu, Optimal Control of
Finite-valued Networks Proc. WCICA’12. (to appear)
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IV. Mixed Strategy Systems

Assume P; use mixed strategy. Then (9) becomes
x(t4+1) = Lu(t)x(t), i=1,2,--- s,
with )
P(L:Li>:pi7 and szzl

i=1
Now if we consider x as the distribution of states, we still

have (9) with
L= ZP,L,
i=1
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== Finite Horizon Case

m—1

J=E cr(u(k),x(k)) + cm(x(m)) ’x(O) (12)

=
I

Theorem 4.1

(Dynamic Programming) Let J* be the optimal value of
(12). Then

J*(x0) = Jo(x0),
where J, comes from Algorithm 4.2.

[4 [10] A. Datta, A. Choudhary, M.L. Bittner, E.R. Dougherty,
Exernal control in Markovian genetic regulatory networks,
Machine Learing, Vol. 52, 169-191, 2003.
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= Finite Horizon Case (continued)

Algorithm 4.2

(13)

Ji(x(k)) = max,) E [cx(u(k),x(k)) + T (x(k + 1))],

k=m—-—1m-2,---.1,0.

(14)

4
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1w STP Expression(continued)
Let

(0 8) = pfy, i=1- g j=1,,p.
We construct
Cr = (uij) € My

Then
ci(u,x) = ul Cix.

Notations:
(i) u'(k): the control for x(k) = &, i=1,-- ,p;
(ii) Consider J; as a vector with

Je=e(8,), -+ Ju(@)]".
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= STP Expression(continued)

(u',Col,(Cy)) u'
Jiy = max : + || LT p . (15)
ul e uP
(uP, Col,(Cy)) u?

Set ‘
Vii=Coly(Cy) + L'y, i=1,---,p.

Then
Proposition 4.3

Ji and the optimal control can be calculated as
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= |nfinite Horizon Case

m—1

J=1im E | Y Xc(u(k),x(k)))|x(0) ] . (17)

m—00
k=0

Define a mapping 7 : R? — R? as
(T7); = max [c(u,8)) + Mu"L"J], i=1,---,p. (18)

[4 [11] P. Pal, A. Datta, E.R. Dougherty, Optimal
infinite-holozon control for probabilistic Boolean networks,
IEEE Trans. Signal Processing, Vol. 54, No. 6, 2375-2387,
2006.
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w= |nfinite Horizon Case(continued)

Theorem 4.4

For any bounded J, the optimal payoff satisfies

J* = lim T"J. (19)
m—00 )

Theorem 4.5

The optimal payoff is the unique solution of

T = TJ*. (20)

4
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w= |nfinite Horizon Case(continued)

Proposition 4.6
The optimal payoff satisfies

max [Col;(C) + AL"J*| =JF, i=1,---,p. (21)
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V. Evolutionary Game on Multi-agent
Systems

Model:
@ Agents: {1,2,--- ,n}
@ Neighborhoods: {N;|i = 1,--- ,n};
@ Player i is gambling with each Player j € N;.

[4 [12] C. Hauert, M. Doebeli, Spatial structure oftern inhibites
the evolution of coopration in the snowdrift game, Nature,
Vol. 438, 643-646, 2004.

[§ [13] C. F.C. Santos, M.D. Santos, J.M. Pacheco, Social
diversity promotes the emergence of cooperation in public
goods games, Nature, Vol. 454, 213-216, 2008.
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Evolutive Strategies:
xi(t+1) = L(Oxi(t)x(t), VjeN,
i o n.

payoff:

(22)
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1> Question?

How to choose the evolutive matrix L;(z) to realize:
@ emergence of cooperation?
@ coherence?

@ other global properties?
() coo
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ww Update L;(1):
Best Substitution:
Li(t) = Li=(t — 1);

where
J* = argmaxic oy €(1)-

Weighted Average Substitution:

Lin=3 Wre-,

KENUi co()

o)=Y ).

JEN;(1)Ui

where
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VI. Conclusion

(1) Game-based control systems have logical type;

(ii) Semi-tensor product can convert logical type
dynamics into algebraic type dynamics;

(iii) Algebraic form may provide an easy way to solve the
optimization problem.

(iv) Optimal controls lead to Nash equilibrium.

(v) Evolutionary games can be described precisely via
semi-tensor product.
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Thank you for your
attention!

Question?
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