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 Agent:  subsystem with sensors and 
actuators 

 In Nature: particles, neural network, 
ecological system, metabolic system… 

 In Society: urban development, opinion 
dynamics, transportation network…  

 In Engineering: power grid, wired/wireless 
communication, sensor network, robotic 
network, software system… 

1.  Multi-agent Systems 



Interaction  Graph 

Node (agent) 

Link (information flow): directed or undirected 

Graph for the interaction 

topology of agents  

Laplacian or stochastic 

matrices 

 

•Directed graph: directed link 

(without self-loop)  

•Undirected graph  

bidirectional graph 

(undirected connections but 

maybe different weights) 



Consensus: a simple case 

Agent dynamics: dxi/dt= ui  i =1,…2 

Leader (or desired position): x0  

 

Neighbor-based communication (Ni :  

the neighbor set of agent i)  

 

Distributed control: ui=j (xj-xi), jNi 

 

Multi-agent consensus (agreement, synchronization): 

•Leader-following: xi-x0  0 

•Leaderless: xi-xj  0 



Multi-agent Coordination 

 Coordination Problems: 

 Consensus (agreement, synchronization): a basic 

problem 

 Rendezvous, flocking, swarm  

 Formation, sweeping … 

 Coordination  connectivity 

 Interconnection topology: information flow   

 Switching topologies: joint connection  

 Leader-following or leaderless 

 



Distributed analysis & control 

Interconnection 

Topology: 

 

Graph theory 

Collective  

Dynamics: 

 

Stability theory 

Hierarchy and Interaction 



 What happens if a set  
gets involved with the 
coordination of a group of 
agents? 

 How to give distributed 
algorithms for set tracking 
or set optimization? 

 What if there are multiple 
leaders? … 

Set coordination 



Couzin, et al.,  Leadership 
by Numbers  

Nature,  vol 433., Feb. 2005 

Results:  The effectiveness 
of the leaders (informed 
agents) 

Motivation 
Migration or swarm to food source or nest site 



Agents (sheep) are contained in a region spanned 

by a group of leaders (sheepdogs)   

containment control: 

 Multiple leaders: form a moving polytope (convex target 

set) 

 Multiple followers (agents): aim at reaching the convex 

leader-set.  

 

Motivation 2 

www.irobot.com/sp.cfm?pageid=149  



Motivation 3 

 Practical target set (due to inaccuracy in 

measurement, uncertainty in environment…) for 

coordination or decision making 

 Distributed set optimization, optimal consensus 

within a convex set 



 Flocking to a given position  Drive a group 

of agents into a target convex set  

 Leader-following  multi-leader following   

containment control: contain the agents in a 

convex set spanned by leaders 

 Multi-agent consensus  set optimization: 

consensus together with convex optimization 

Set coordination problems 



 Centralized design  Distributed design: 

neighbor-based rule, not completely 

connected 

 Conventional stability  set stability (non-

smoothness) 

 Switching interaction topology (non-

smoothness): common Lyapunov function 

Difficulties 



Distributed algorithm with set 

Interconnection 

Topology: 

 

Graph theory 

Collective  

Dynamics: 

 

Stability theory 

Convex set: 

Convex analysis 



 Stationary set: Couzin, et al. Nature, 2005; Lin, et 

al, IEEE TAC’05 (a segment); Shi, Hong, 

Automatica’09 (any convex set); …  

 Moving-leader containment: Ji et al, IEEE TAC’07; 

Ren et al, IEEE TAC’10; Shi, Hong, et al IEEE 

TAC’12; Lou, Hong, Automatica’12 

 Convex optimization with distributed consensus: 

Johansson et al, IEEE CDC’08; Nedic et al, IEEE 

TAC’09, 10; Shi, Johansson, Hong, (IEEE TAC 

conditionally accepted 2012), Lou et al, WCICA’12.  

Related results 



2. Preliminaries 

Graph theory: the interaction topology of agents 

(which is important especially in the 

homogenous agent case)  algebraic graph 

theory: Laplacian or stochastic matrices. 

 Directed graph (without self-loop)  

 Undirected graph  bidirectional graph 

(undirected connections but weights may be 

different) 



Joint connection: union graph in [t, ) is 

connected for any t: a necessary condition 

Uniform joint connection: T, union graph on 

[t,t+T] is connected for any t. 

…… 

Union graph is connected 

Graph 1 Graph 3 Graph 2 Graph m 

Connectivity 



Convex set 

K is a convex set if, for 

 

 

 d(x,K) : distance between set K and x  



Dini derivative 

Dini derivative: for a continuous function h 

 

 

Dini derivative for a switching function V:     

if    



 ISS proposed by Sontag for nonlinear 

control systems, widely used in stabilization 

& robust control (for interconnected system) 

    dx/dt=f(x,u),       x: state; u: input 

 The system is ISS if ||x(t)||(||x(0)||, t) + 

(||u||), with K-function  and KL-function  

 ISS  bounded input bounded output;  

   ISS  asymptotic stability if no input;  

 

Input-to-state Stability (ISS) 



 Integral ISS (iISS): the system is integral ISS if 

||x(t)|| (||x(0)||, t) + 
t
(||u(s)||)ds 

 Set ISS (SISS) by Sontag: static/fixed set and 

system without switching 

 There are few ISS results for multi-agent systems 

with fixed topologies (Scardovi et al, IEEE CDC’09; 

Tanner et al, IEEE TRA’04) 

 

Not the set case we studied for switched multi-agent 

systems with moving sets: new SISS & SiISS 

Related discussion 



 Multiple leaders: form a moving polytope 

(convex target set) 

 Multiple followers (agents): aim at reaching 

the convex target set.  

 Tracking a moving set in a distributed way 

 Bounded tracking error if the uncertainties 

are bounded 

3. Containment 



 Leaders: dyi/dt=vi(y,t), i=1,…,k; vi is the 
velocities 

 Agents: dxi/dt=ui, i=1,…,n; ui is a neighbor-
based rule in a nonlinear form with 
uncertainty wi : 

 

 

 

 Uncertainties: leaders with unknown 
velocities v; agents with disturbance w 

Distributed design 



Basic setup 

 The position is measurable, but the velocity 
is unmeasurable 

 Position information of a leader is known 
by an agent if and only if the agent is 
connected to the leader: local controller 
only contains position information 

 The interconnection topology is time-
varying (widely used in multi-agent control) 



Variable topology 

Time-varying graph   L-connected; jointly L-connected, …  

Li: moving leaders  span a convex set  

Fi: follower agents, time-varying communication 



L-connection 

L-connected: any 

agent is accessible to 

a leader; 

Jointly L-connected 

(JLC) : union graph of 

interval [s,t] is L-

connected;  

Uniformly JLC:  T 

such that the union 

graph of [t, t+T] is L-

connected 



Set tracking and SISS 

 SISS  set tracking if there is no 

uncertainty 

 SISS with the uncertainties (v,w) as input 

with respect to the target set  

 K-function: ; KL-function:  

 SISS: d(xi, )(d(xi(0), ), t) + (||v,w||) 

 SiISS (set integral input-to-state stability): 

d(xi, )(d(xi(0), ), t) + 
t
(||v,w||)ds 



Analysis 

Different from ISS, no equivalence 

relationship with ISS-Lyapunov function 

Constructing non-smooth Lyapunov 

function: V(x)=maxi d(xi, ) 

Estimating the convergence rate for SISS 

or SiISS by finding suitable K-function  

and KL-function . 

Estimation is done for each interval in the 

case of joint L-connection 



Main results: SISS 

Key result 1: SISS of MAS = uniformly jointly 

L-connected (UJLC) 

 

Remarks: 

SISS  bounded (uncertain) input, 

bounded tracking error 

Completely L-connected  SISS 

 



Main results: SiISS 

Key result 2: Uniformly jointly L-connected  

SiISS of MAS 

Key result 3: For bidirectional graph, SiISS = 

[t,) jointly L-connected for any t 

 

Remarks: 

 For our system: SISS (UJLC)  SiISS 

 Other sufficient conditions: Complete or 

Acyclic L-connection …  SiISS 



Set tracking 

 Set tracking (without error): the agents 

enter the convex target set.  

Set tracking  

1.    SISS + (v,w) vanishing; or 

2.    SiISS + 

 bounded 

Consistent with ISS in the conventional 

single nonlinear system. 



4. Distributed set optimization 

Optimization of the whole system with global 

cost function when each agent optimizes 

its own cost.  

A hot topic: convex cost functions 

(corresponding to convex set); local 

information; topology may be switching … 

Our result: weak connectivity condition, 

continuous-time system with a new 

method, optimization with consensus. 



Introduction 



Methods 

Gradient-based: manipulation of the primal 

variable through (sub)gradient with local 

(environment) information … 

Neighbor-based: optimization with local 

communication information 

Swarm intelligence, genetic algorithm, … 

(hard to be analyzed) 



 Agent dxi/dt= ui only knows 
the information of its own 
convex set Xi and its 
neighbor xj  the agents 
achieve consensus within X0  

(=∩Xi, which is not empty) 

 Distributed convex 
intersection  (computer): 
Projected consensus 
algorithm (PCA) by Nedic et 
al 2010…… 

Our Problem 



Optimal consensus 

Establish relationships between connectivity conditions and 

optimal consensus. 

Basic model: 

 Connectivity: uniformly jointly-connected for digraph, [t, 

) jointly-connected for bidirectional (undirected) graph 

 Agents: dxi/dt=ui, i=1,…,n; ui a nonlinear local rule = 

subgradient for optimization + neighbor-based rule for 

consensus 

 The intersection set X0=∩Xi is not empty 

 Dwell time 



Convex projection 



Distributed Control 



Main results 

Result 1: Global optimal consensus of MAS 

 uniformly jointly strongly connected 

 

Result 2: In the bidirectional case, MAS 

achieves global optimal consensus = [t, ) 

joint connection 

 



Approximate projection 

In practice, it is hard to get 

accurate projection (PCA) 

 approximate projection 

with 0*</2 (APCA): 

 

Optimal consensus: given 

APCA, there is x* X0 

such that  CK(v, )-v is a cone 

 



Distributed Control 

Controller:  

 where 



Main results for APCA 

Result 1: Global optimal consensus of MAS 

 uniformly jointly strongly connected & 

                               & 

 

Result 2: Xi is bounded and 0<</4  

 



Numerical example 



5. Conclusions 

 Multi-agent system: promising 

 Coordination problems beyond multi-agent 

consensus: set coordination, distributed 

optimization, … 

 Set coordination for more generalized 

models: higher-order systems, event-

triggered control, or stochastic or 

constrained models, … 



Thank you！ 

 


