

Pinning Control: from Synchronization to Social Learning **Xiaofan Wang**

@ 2004 SJTU

OUR RESEARCH ON PINNING CONTROL

Pinning Controlled Flocking, 2009 Social Learning, 2011

Pinning Control: Motivations

Directly control every node in a huge-scale network may be practically impossible & unnecessary!

Pinning Control: Basic Problems

Feasibility: Can the goal of control be achieved by only directly control a fraction of nodes?

--- Control Science

Efficiency: How to select the nodes to be controlled so that the goal can be achieved with a low cost?

SJTU

Case I: Pinning Controlled Synchronization

$$\begin{cases} \dot{x}_{k} = f(x_{k}) + c \sum_{j=1}^{N} a_{kj} \Gamma x_{j} + u_{k}, & k = 1, 2, \cdots, l \\ \dot{x}_{k} = f(x_{k}) + c \sum_{j=1}^{N} a_{kj} \Gamma x_{j}, & k = l+1, l+2, \cdots, N \end{cases}$$

Objective: Stabilize onto a homogeneous equilibrium

$$x_1(t) = x_2(t) = \dots = x_N(t) = \overline{x}$$

Linear Error Feedback:

$$u_k = -cd(x_k - \overline{x})$$

Wang & Chen, 2002

@ 2004 SJTU

Feasibility: Stability Criterion

$$\begin{cases} \dot{x}_k = f(x_k) + c \sum_{j=1}^N a_{kj} \Gamma x_j - c d \Gamma \left(x_k - \overline{x} \right), & k = 1, 2, \cdots, l \\ \dot{x}_k = f(x_k) + c \sum_{j=1}^N a_{kj} \Gamma x_j, & k = l+1, l+2, \cdots, N \end{cases}$$

$$B = A - D \qquad D = diag(d_1, d_2, \cdots, d_N)$$

$$c \geq \left| \rho / \lambda_{1} \right|$$

@ 2004 SJTU

Efficiency of Pinning Control: Two Pinning Schemes

Specifically pinning scheme

Randomly pinning scheme

@ 2004 SJTU

Pinning Control of a BA Scale Free Network

3000 nodes and about 9000 edges

Wang & Chen, 2002

Case II: A Modified Vicsek Model

Average direction $\theta_i(k) = \langle \theta_i(k-1) \rangle_r + \Delta \theta$

Constant speed

SJTL

Vicsek, et al., Phys. Rev. Lett., 75 (6), 1226, 1995

Different agents may have different influencing abilities

 $\theta(t+1) = \langle \theta(t) \rangle_r$

W. Yang, L Cao & X Wang, PRE, 2006

Simulation Results

S: largest cluster $\overline{r}(\gamma)$: S=1 (global syn.) $\gamma \uparrow, \overline{r}(\gamma) \uparrow$

Heterogeneity

L = 50 n = 1250 v = 0.1

Heterogeneity benefits consensus!

SJTU

Pinning Control Scheme

□Goal: achieve direction consensus in an influence network with a desired direction by pinning a fraction of agents.

 Specifically pinning control control f% agents with largest radii
Randomly pinning control control f% randomly chosen agents
fixed same direction

The Largest Desired Cluster S_d $P(r) \sim r^{-\gamma} \quad \gamma \in [2, \infty)$

Heterogeneous

Homogeneous

L = 50 N = 1250 v = 0.1 < r > = 6

Case III: Pinning Controlled Flocking

AlignmentSeparationCohesionImage: SeparationImage: SeparationI

Goal Seeking (Tracking)

Flocking with a Virtual Leader

$$\dot{q}_{i} = p_{i} \quad \dot{p}_{i} = u_{i} \qquad \begin{cases} \dot{q}_{\gamma} = p_{\gamma} \\ \dot{p}_{\gamma} = f_{\gamma}(q_{\gamma}, p_{\gamma}) \end{cases}$$
$$u_{i} = -\sum_{j \in N_{i}(t)} \nabla_{q_{i}} \psi(\|q_{ij}\|) \qquad \text{Separation & Cohesion} \\ -\sum_{j \in N_{i}(t)} w_{ij}(p_{i} - p_{j}) \qquad \text{Alignment} \\ -c_{1}(q_{i} - q_{\gamma}) - c_{2}(p_{i} - p_{\gamma}) \qquad \text{Tracking} \end{cases}$$

Olfati-Saber, IEEE Trans AC, 2006

Pinning Controlled Flocking

Uninformed agent

Informed agent

$$u_{i} = -\sum_{j \in N_{i}(t)} \nabla_{q_{i}} \psi(\|q_{ij}\|) - \sum_{j \in N_{i}(t)} w_{ij}(p_{i} - p_{j})$$

 (q_{γ}, p_{γ})

Separation & Cohesion Alignment $u_{i} = -\sum_{j \in N_{i}(t)} \nabla_{q_{i}} \psi\left(\left\|q_{ij}\right\|\right) - \sum_{j \in N_{i}(t)} w_{ij}(p_{i} - p_{j})$ $-c_{1}(q_{i} - q_{\gamma}) - c_{2}(p_{i} - p_{\gamma}) \text{ Tracking}$

H Su, X Wang & Z Lin (2009). IEEE Trans. Automatic Control

Case IV: Pinning Controlled Social Learning

人肉搜索为何几乎百发百中? 教育医疗等却为何如此难以形成最佳共识?

Social Learning on Networks

Update

Beliefs

Complex Networks & Control Lab, SJTU

Private Observation

COmmunication

Case study: Who is singing?

Bayesian+ Consensus

$$m_{i,t}(s_{t+1}^i) = \sum_{\theta \in \Theta} l_i(s_{t+1}^i \mid \theta) \mu_{i,t}(\theta)$$

[Jadbbaie, Sandroni, and Tahbaz-saleh 2010]

The Wisdom of Crowds

(a) The social network is **strongly connected**;

(b) All agents have strictly positive self-reliances;

(c) There exists an agent with **positive prior belief** on the true state;

(d) There is no other state that is **observationally equivalent** to the true state from the point of all agents in the network.

Social learning with uninformed agents

Suppose that

(a) The social network is strongly connected;

(b) There exists at least one informed agent and all selfreliance of informed agents are strictly positive;

(c) There exists at least one agent with positive prior belief on the true state;

(d) There is no state that is observationally equivalent to the true state from the point of all informed agents in the network.

Social learning with uninformed agents

In a component of Wealink

N=1157, two states, two signals {H, T}

Prior beliefs: uniform distribution in [0,1], a_{ii}=0.5

Social learning with uninformed agents

In a power-law network with tunable exponent

N=1000, two states, two signals {H, T}

Prior beliefs: uniform distribution in [0,1], a_{ii} =0.5

Similarity Breeds Connection: Homophily Principle in Sociology

Social learning with similarity-based communication

$$\mu_{i,t+1}\left(\theta\right) = \frac{1}{\left|N_{i}(t)\right|} \left(\mu_{i,t}\left(\theta\right) \frac{p\left(s_{t+1}^{i} \mid \theta\right)}{m_{i,t}\left(s_{t+1}^{i}\right)} + \sum_{j \in N_{i}(t)} \mu_{j,t}\left(\theta\right)\right)$$

Social Learning with Bounded Confidence

The Wisdom of Crowds

The larger the group, the smaller the confidence radius needed for asymptotic learning.

Social Learning on Networks

Private Observation COmmunication

Update

Beliefs

