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1.1 Synchronization of complex networks

Network model

ẋi = f(xi) + c

N∑
j=1

lijH(xj), i = 1, 2, · · · , N. (1)

Network node ẋi = f(xi), Inner-linking function H(·), the coupling
strength c, Laplace matrix L = (lij).
Eigenvalues of Laplace matrix L = (lij) (symmetrical):

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN . (2)

Synchronization:

x1(t)→ x2(t)→ · · · → xN (t), as t→∞. (3)

Diffusive coupling −→

x1(t)→ x2(t)→ · · · → xN (t)→ s(t), ṡ(t) = f(s(t)).
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synchronization region (Master stability function
method)

Linearized equation: ξ̇i = Df(s(t))ξi + c
∑N

j=1 lijDH(s(t))

Master stability equation:

ω̇ = [Df(s(t)) + αDH(s(t))]ω. (4)

synchronization region S: the region of α such that the largest
Lyapunov exponent of (4) Lmax < 0.

A stability condition of the synchronous state s(t):

cλk ∈ S, k = 2, 3, · · · , N. (5)

If the synchronous state s(t) is an equilibrium point, the master
stability equation becomes:

ω̇ = [F + αH]ω. (6)

The synchronization region S becomes the stable region of F + αH
with respect to parameter α.
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1.2 Consensus of multi-agent systems

Agent systems (linear model)µ

ẋi = Axi +Bui,

yi = Cxi, i = 1, · · · , N.
(7)

An observer-based dynamic protocolµ

v̇i = (A+BK)vi + cV

 N∑
j=1

lijC(vi − vj)−
N∑
j=1

lij(yi − yj)

 ,

ui = Kvi, i = 1, · · · , N,
(8)

where c > 0 is the coupling strength, L = (lij) is the topological
matrix, V and K are feedback gain matrices.
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Multi-agent network

Connecting (7) and (8) gives

ξ̇i = Fξi + c

N∑
j=1

lijHξj , i = 1, · · · , N. (9)

where ξi =

[
xi
vi

]
, F =

[
A BK
0 A+BK

]
, H =

[
0 0
−V C V C

]
.

Node ξ̇i = Fξi, inner-linking matrix H.

Consensus

Given agent systems (7)§it is called that the protocol (8) solves the
consensus, if the multi-agent network (9) satisfies

lim
t→∞
‖xi(t)− xj(t)‖ = 0, lim

t→∞
vi = 0, ∀ i, j = 1, 2, · · · , N. (10)
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Consensus condition

Theorem 1

Given agent systems (7). Suppose that the communication topology L has
a spanning tree, the protocol (8) solves the consensus problem if and only
if A+BK and A+ cλiV C, i = 2, · · · , N are Hurwitz stable§where
λi, i = 2, · · · , N are the non-zero eigenvalues of the Laplace matrix L.

Remark 1µThe protocol (8) can be viewed as a generalization of the
observer-based controller for the traditional control systems. The
separation principle still holds. By introducing a new parameter c, one
can introduce a new concept “Consensus region” similar to the
synchronization region in the complex networks.
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Consensus region

By Theorem 1§the stability of A+ cλiV C is very important for
consensus. Viewing cλi as a single parameter α leads to

Definition (Consensus region)

The region of α such that A+ αV C is stable is called the consensus
region.

By Theorem 1§the condition for nework (9) achieving consensus is
that A+BK is stable and

cλk ∈ S, k = 2, 3, · · · , N.

For undirected topology, the consensus region is on the real axis; for
directed topology, the consensus region is in the complex plane. The
region can be bounded, unbounded, or a set of several bounded
regions, etc.
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An example

Given matrices

A =

−1.4305 12.5142 3.3759
1 −1 1

−0.3911 −5.5845 −2.3369

 , B =

1 0
0 1
0 0

 , C =

[
0.8 9.6 2.6
−0.3 −5 −1

]
,

V =

−0.8 9.6
0 0
0.3 5

 ,K =

[
−0.1720 13.3442 3.5464
0.9102 −1.0954 0.7396

]
.

For undirected topology: the consensus region
S = (0, 1.4298) ∪ (2.2139, 7.386).
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Remarks

From the above discussion, one can see that the problems in
synchronization of complex networks and consensus of multi-agent
systems can be studied in a unified framework. The concept
“synchronization region” or “consensus region” is very important.
The larger the consensus region, the easier the consensus. The
consensus region shows the robustness of consensus.

Actually, the topics in “synchronization of complex networks” is very
popular in the community of physics. The concept of synchronization
appeared very early. The physicists pay much attention on
synchronization phenomena, and factors of influencing
synchronization. The topics in “consensus of multi-agent systems”
are popular in the area of dynamics and control. The control
scientists pay much attention on the design of protocols to achieve
consensus. These two concepts are closely related to each other.
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Remarks

In the field of complex network synchronization, the inner connecting
matrix H is sometimes taken as H = I by some authors. However, in
the field of multi-agent consensus, the inner connecting matrix
generally contains some designing variables, and generally it can not
be taken as an identity matrix, e.g., in the above mentioned
observer-type protocol, the inner connecting matrix is

H =

[
0 0
−V C V C

]
.

Viewing the multi-agent system connected by some different
protocols, at this time, the inner connecting matrix will vary with the
protocols and the single agent model. For example, with the higher
order integer agent, the inner connecting matrix will have some
special characteristics.
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2. Characteristics of synchronization region
2.1 Disconnected characteristics

The existence of n disconnected stable regions for F + αH.

Theorem 2

For any natural number n, there are matrices F and H of order n such
that F + αH has at least [n/2] + 1 disconnected stable regions with
respect to parameter α.

Main ideaµ

If a real polynomial is stable, then all its coefficients are positive.
Construct F and H such that the constant term of characteristic
polynomial of F + αH is a polynomial with variable α of order n§the
other coefficients are constants.
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Constructing F and H

H =


0 1 · · · 0
...

. . .
. . .

...

0 0
. . . 1

−1 0 · · · 0

 , F =


−β β1 · · · 0

...
. . .

. . .
...

0 0
. . . βn−1

−βn 0 · · · −β

 ,

det(sI − F − αH) = (s+ β)n + (α+ β1)(α+ β2) · · · (α+ βn)
= (s+ β)n − βn + βn + (α+ β1)(α+ β2) · · · (α+ βn).
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The case for given node dynamics (given F )

Theorem 3

For any given real stable matrix F of order n, suppose
det(sI − F ) = sn + γn−1s

n−1 + · · ·+ γ1s+ γ0, and every eigenvalue of F
corresponds to only one Jordan form. If there is a scalar β0 6= 0 such that
p(s) = sn + γn−1s

n−1 + · · ·+ γ1s+ γ0 − β0 is stable and p(s) has ni pairs
of conjugate complex eigenvalues, then there exists a real matrix H such
that F + αH has at least [n−ni2 ] + 1 disconnected stable regions with
respect to parameter α.

Main ideaµUsing the Jordan form of F .

H0 =



0 0 0 · · · 0
0 0 1 · · · 0

.

.

.

.

.

.
. . .

. . .
.
.
.

0 0 0
. . . 1

−1 0 0 · · · 0


, F0 =



ξ1 1 0 0 · · · 0

−η21 ξ1 β2 0 · · · 0
0 0 λ03 β3 · · · 0

.

.

.

.

.

.

.

.

.
. . .

. . .
.
.
.

0 0 0 0
. . . βn−1

−βn 0 0 0 · · · λ0n


.

Disconnected synchronization regions imply the possibility of
intermittent synchronization behavior.
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2.2 Convexity analysis

Stability of F + α1H and F + α2H =⇒ stability of
F + (λα1 + (1− λ)α2)H, for all 0 ≤ λ ≤ 1º

Theorem 4

Suppose that F + α1H and F + α2H are stable, and the rank of H is 1.
Let H = bc, where b is a column vector and c is a row vector with
compatible dimensions, and (F, b) be controllable. Then, the following
conditions are equivalent to each other:

(i) λ(F + α1H)−1 + (1− λ)(F + α2H) is stable for all 0 ≤ λ ≤ 1.

(ii) There is a common matrix P = PT such that
P (F + αiH) + (F + αiH)TP < 0, i = 1, 2.

(iii) (F + α1H)(F + α2H) does not have negative real eigenvalues.

(iv) 1−Re{(α2 − α1)c(jwI − F − α1H)−1b} > 0, ∀w ∈ R.

Further, if any one of (i)-(iv) holds, one has
(?) F + (λα1 + (1− λ)α2)H is stable for all 0 ≤ λ ≤ 1.
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Complex synchronization region

Convexity analysis.

Theorem 5

Suppose that F + σ1H and F + σ2H are stable, and the rank of H is 1.
Let H = bc, where b is a column vector and c is a row vector with
compatible dimensions, and (F, b) be controllable. Then, the following
statements are equivalent to each other:

(i) F + σ1+σ2

2 H + εH is stable for all ε ∈ C, |ε| ≤ |σ2−σ1

2 |.

(ii) ‖c(sI − F − σ1+σ2

2 H)−1b‖∞ < 2
|σ2−σ1| .

(iii) There is a common matrix P = P1 + iP2 > 0 such that

P

(
F +

σ1 + σ2
2

H + εH

)
+

(
FT +

σ1 + σ2

2
HT + εHT

)
PH < 0,

∀ ε ∈ C, |ε| ≤
∣∣σ2−σ1

2

∣∣ , where α denotes the complex conjugate of α.
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2.3 Unbounded synchronization region

Real unbounded region

Theorem 6

Given a matrix F ∈ Rn×n, there exists a matrix H ∈ Rn×n of rank 1 such
that the stability region of F + αH with respect to parameter α contains
(−∞, α1], α1 < 0, if and only if every unstable eigenvalue of F is
corresponding to only one Jordan block.

Complex unbounded region

Theorem 7

Given a matrix F ∈ Rn×n. Suppose that each unstable eigenvalue of F is
corresponding to only one Jordan block. Then, there exists a matrix
H ∈ Rn×n of rank 1 such that F + (x+ yi)H is stable for all
x ∈ (−∞,−1], y ∈ (−∞,+∞).

Duan Z. S., et. al. (Peking University) 2012-5-10 19 / 42



2.4 Example: A Chua circuit network

Chua’s circuit node

ẋi1 = −kαxi1 + kαxi2 − kα(ax3i1 + bxi1),
ẋi2 = kxi1 − kxi2 + kxi3,
ẋi3 = −kβxi2 − kγxi3.

(11)

Linearizing (11) at its zero equilibrium gives

ẋi = Fxi, F =

 −kα− kαb kα 0
k −k k
0 −kβ −kγ

 . (12)

k = 1, α = −0.1, β = −1, γ = 1, a = 1, b = −25. F is stable.
Take the inner linking matrix

H =

 0.8348 9.6619 2.6591
0.1002 0.0694 0.1005
−0.3254 −8.5837 −0.9042

 .

Two disconnected stable regions: S1 = [−0.0099, 0] and
S2 = [−2.225,−1).
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Example: A Chua circuit network
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Fig. 4 Network on graph G1. Fig. 5 Network on graph G2.

Combining graph theory and synchronization region together can
discuss synchronization problems more completely.
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2.4 Example: Satellite formation

The linearized model of the i-th satellite with respect to the virtual
satellite is given by Hill equationsµ

ẍi − 2ω0ẏi = uxi ,

ÿi + 2ω0ẋi − 3ω2
0yi = uyi ,

z̈i + ω2
0zi = uzi ,

The control input to satellite i is designed as

ui = −A1hi + c

N∑
j=1

aij (F1(ri − hi − rj + hj) + F2(ṙi − ṙj)) ,

where A1 =

0 0 0
0 3ω2

0 0
0 0 −ω2

0

 , A2 =

 0 2ω0 0
−2ω0 0 0
0 0 0

 .
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Satellite

Suppose that the height of the virtual satellite is a = 7359.5km, and
satellite 1 is the leader satellite. Take the initial state as x0 = 0, y0 = 500,
z0 = 866, ẋ0 = 1, ẏ0 = 0, ż0 = 0. The four satellites maintain a square
shape with a separation of 500 m in a plane tangent to the orbit of the
virtual satellite by an angle 60 degree. Let h1 = (100, 100, 0),
h2 = (−100, 100, 0), h3 = (100, 0, 173.21), h4 = (−100, 10, 173.21).

(a)
(b) (c)
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Remarks

Generally in the field of complex network synchronization, the graph
eigenvalue ratio λ2/λN represents the synchronizability. Similarly, in
the multi-agent systems, the consensusability problem can be studied.
However, can the eigenration λ2/λN really represent the
synchronizability? When the synchronization region is disconnected, if
every Laplace eigenvalue falls into a single part of synchronization
region, the eigenratio represents nothing.

The synchronizability problem should be studied by connecting the
eigenratio and the synchronization region together. Especially for the
directed networks, this problem can be very complicated.
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3.1 Problem formulation

Multi-agent systems with disturbancesµ

ẋi = Axi +Bui +Dωi, i = 1, 2, · · · , N, (13)

Distributed consensus protocolµ

ui = cK

N∑
j=1

aij(xi − xj), (14)

Let x = [xT1 , · · · , xTN ]T§ω = [ωT1 , · · · , ωTN ]T . A multi-agent network
is described by

ẋ = (IN ⊗A+ cL⊗BK)x+ (IN ⊗D)ω,

z = ((IN −
1

N
11T )⊗ C)x,

(15)

Let Tωz denote the transfer function from ω to z.
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3.2 H∞ consensus condition

Definition (H∞ consensus)

For given scalar γ > 0§the protocol (14) solves the sub-optimal H∞
consensus§if

for wi = 0, network (15) achieves consensusµlimt→∞ ‖xi − xj‖ = 0;

‖Tωz‖∞ < γ.

Theorem 8

Suppose that the matrix L corresponds an undirected and connected
graph. For given γ > 0§there exists a protocol (14) solving the
sub-optimal H∞ consensus problem if, and only if the following N − 1
systems are stable and their H∞ norm are smaller than γµ

˙̂xi = (A+ cλiBK)x̂i +Dω̂i,

ẑi = Cx̂i, i = 2, 3, · · · , N,
(16)

where λi, i = 2, · · · , N are nonzero eigenvalues of Laplace matrix L.
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3.3 H∞ consensus region

A new systemµ
ζ̇ = (A+ σBK)ζ +Dωi,

zi = Cζ,
(17)

Definition (H∞ consensus region)

The region Sγ of σ such that system (17) is stable and ‖T̂ωizi‖∞ < γ is
called the H∞ consensus region with index γ.

For given γ > 0§the protocol (14) solves the H∞ consensus problem
if, and only cλi ∈ Sγ , i = 2, 3, · · · , N .

The region Sγ can be bounded, unbounded or disconnected.

H2 performance problems can be similarly studied
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3.4 Unbounded H∞ consensus region

Theorem 9

For given γ > 0§there exists a protocol (14) the H∞ consensus region
includes Sγ , [τ, ∞), τ > 0§if and only if there exists P > 0 such thatAP + PAT − τBBT D PCT

DT −γ2I 0
CP 0 −I

 < 0. (18)

Algorithm

Constructing the protocol for solving the H∞ consensus problrms¶

1) Solve the LMI (18) to get P > 0 and τ > 0¶

2) Choose K = −1
2B

TP−1¶

3) Choose the coupling strength c ≥ τ
min

i=2,··,N
λi

, where λi, i = 2, 3, · · · , N

are the nonzero eigenvalues of the Laplace matrix L.
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3.5 Complexity of H2 performance changes

Node dynamics:

ẋi = Fxi +B1u, y = C1xi. (19)

Complex network:

ẋi = Fxi − c
N∑
j=1

lijHxj +B1u,

y =

N∑
j=1

C1xj .

i = 1, 2, · · · , N.

(20)
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A special network topology

A special matrix Lµ

LN×N = (lij)N×N , lii = 0; lij = −1, if i > j, j ≤ i− 2 and j is odd;
otherwise lij = 1.

(21)
Exampleµ

When N = 5, L5×5 =


0 1 1 1 1
1 0 1 1 1
−1 1 0 1 1
−1 1 1 0 1
−1 1 −1 1 0

 .

When N = 6, L6×6 =



0 1 1 1 1 1
1 0 1 1 1 1
−1 1 0 1 1 1
−1 1 1 0 1 1
−1 1 −1 1 0 1
−1 1 −1 1 1 0

 .
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Characteristics of this new matrix L

Lemma When N is even, different eigenvalues of LN×N are −1 and
1, and LN×N is similar to

ΛN =

(
−IN

2
0

0 JN
2

)
,

where IN
2

is a unit matrix of order N
2 ×

N
2 ; JN

2
is Jordan block of order

N
2 ×

N
2 :

JN
2

=


1 2

. . .
. . .
. . . 2

1

 .

When N is odd, different eigenvalues of LN×N are −1, 1 and 0, and L is
similar to diag(ΛN−1, 0).
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Accumulation of H2 norm

Node equation:

ẋ1 = Fx1 +B1u1, y1 = C1x1, (22)

F =

(
0 1
−2 −3

)
, B1 =

(
0
1

0.866

)
, C1 =

(
1 2

)
.

A special network:

ẋ = Ax+Bw, y = Cx, (23)

where
A = (IN

⊗
F + L

⊗
H), H = B1C1, B =

(
BT

1 · · · BT
1

)T
,

and C =
(
C1 · · · C1

)
,

A is stable if A1, A1 −H and A1 +H are stable.

Duan Z. S., et. al. (Peking University) 2012-5-10 33 / 42



Accumulation of H2 norm

(1) When N = 1, H2 norm of system (23) is 1.

(2) When N = 2, H2 norm of system (23) is 4.4740.

(3) When N = 3, H2 norm of system (23) is 8.2455.

(4) When N = 4, H2 norm of system (23) is 31.1467.

(6) When N = 6, H2 norm of system (23) is 230.4775.

(8) When N = 8, H2 norm of system (23) is 1.7971e+003.

(10) When N = 10, H2 norm of system (23) is 1.4385e+004.

(12) When N = 12, H2 norm of system (23) is 1.1687e+005.

(14) When N = 14, H2 norm of system (23) is 9.5860e+005.

(16) When N = 16, H2 norm of system (23) is 7.9151e+006.

(20) When N = 20, H2 norm of system (23) is 5.4700e+008, which
is larger than 220.
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Other complex networks

Diffusive coupled complex network:

lii = −
N∑

j=1,j 6=i
lij .

Network (23) with N nodes, its H2 norm is N (this can be proved
strictly).

Anti-symmetrical coupled complex network:

lii = 0, lij = −Lji.

The H2 norm of the corresponding network increases slowly.

The changes of the H2 norms of different complex network are very
different.
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3.6 The impact of H2 norm on synchronization

Consider Lur’e node system:{
ẋ1 = (F − 2H)x1 +B01f1(y1), x1(0) = B01,
y1 = C01x1,

(24)

where

F =

(
0 1
−4 −2.5

)
, B01 =

(
0
1

)
, C01 =

(
2 2

)
, H = B01C01,

f1(y1) = |y1 + 1| − |y1 − 1|, f1 satisfies the sector conditionµ

0 ≤ f1(y1)

y1
≤ 2, f1(0) = 0. (25)
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The impact of H2 norm on synchronization

Consider a network with the regulated output:
ẋ = (IN

⊗
(F − 2H) + LL

⊗
H)x+Bf(y), x(0) = EN

⊗
x1(0),

y = C1x,
z = C2x,

(26)
Linearizing netowrk (26):{

ẋ = (IN
⊗
F + LL

⊗
H)x, x(0) = EN

⊗
x1(0),

z = C2x.
(27)

By LQR method, network (27) can be viewed as:{
ẋ = (IN

⊗
F + LL

⊗
H)x+ EN

⊗
x1(0)δ(t), x(0−) = 0,

z = C2x,
(28)

The output energy of netowrk (27) isµ

‖C2(sI − IN
⊗

F − LL
⊗

H)−1EN
⊗

x1(0)‖2.
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Output synchronization
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Network with norm accumulated topology. Network with diffusive topology.

The larger the H2 norm, the slower the synchronization.

The problem related to H∞ norm can be similarly studied.
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Other related problems

Globally synchronization region of nonlinear networks (global
consensus region of nonlinear multi-agent networks);

H2 and H∞ performance region);

Directed networks → complex synchronization region;

Other complex characteristics of complex networks;

Combining graph theory with synchronization regions;

Practical applications.

Duan Z. S., et. al. (Peking University) 2012-5-10 40 / 42



Related papers

1. Zhongkui Li, Zhisheng Duan, Guanrong Chen, On H-infinity and H2 Performance Regions
of Multi-Agent Systems, Automatica, 47, 797-803, 2011

2. Zhongkui Li, Zhisheng Duan, Guanrong Chen, Global synchronized region of linearly
coupled Lur’e systems, International Journal of Control, 84(2), 216-227, 2011

3. Zhongkui Li, Zhisheng Duan, Guanrong Chen, Lin Huang, Consensus of multi-agent
systems and synchronization of complex networks: A unified viewpoint, IEEE Transactions
on Circuits and Systems-I, 57(1), 213-224, 2010

4. Zhisheng Duan, Jinzhi Wang, Guanrong Chen, Lin Huang, H2 norm accumulation and its
impact on synchronization of complex dynamicl networks, International Journal of
Control, 82(12), 2356-2364, 2009

5. Chao Liu, Zhisheng Duan, Guanrong Chen, Lin Huang, L2 norm performance index of
synchronization and LQR control synthesis of complex networks, Automatica, 45,
1879-1885, 2009

6. Zhisheng Duan, Guanrong Chen, Lin Huang, Disconnected synchronization regions of
complex dynamical networks, IEEE Transactions on Automatic Control, 54(4), 845-849,
2009

7. Zhisheng Duan, Guanrong Chen, Lin Huang, Synchronization of weighted networks and
complex synchronization regions, Physics letters A, 372§3741¨3751, 2008

8. Zhisheng Duan, Chao Liu, Guanrong Chen§Network synchronizability analysis: The
theory of subgraphs and complementary graphs, Physica D, 237(7¤, 1006-1012, 2008

9. Zhisheng Duan, Jinzhi Wang§Guanrong Chen, Lin Huang, Stability analysis and
decentralized control of a class of complex dynamical networks, Automatica,44,
1028-1035, 2008

10. Zhisheng Duan, Guanrong Chen§Lin Huang, Complex network synchronizability: Analysis
and control, Physical Review E, 76(2007)056103Duan Z. S., et. al. (Peking University) 2012-5-10 41 / 42



Many thanks!
Any questions?
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