Shanghai, 9-11 May 2012

### Multi-Agent Systems: Nexus of All Realities in Systems and Control

### Jinhu Lü

Academy of Mathematics and Systems Science Chinese Academy of Sciences

### With Thanks To

- AMSS, Chinese Academy of Sciences
   Yao Chen
- University of Virginia, USA
   Prof. Zongli Lin
- RMIT University, Australia Prof. Xinghuo Yu
- Princeton University, USA
   Prof. Simon Levin, Prof. Iain Couzin

## Outline



# Modeling, Analysis, Control of MAS: An Overview

**Consensus of MAS: Several Typical Cases** 

#### Conclusions

### Introduction



#### What is Multi-Agent Systems (MAS)?

Main Characteristics of MAS

### **Examples: Bird Flock**



### **Examples: Fish Flock**



### **Examples: Rotating Ants Mill**



### **Examples: Bacteria Group**



### **Examples: Social Systems**



### **Examples: Formation Control**



The problem: Maintaining a formation in 2D or 3D





### **Examples: Group Robots**





### What is Multi-Agent Systems (MAS)?

#### ♦ Agents

Insect, bird, fish, people, robot, ... node, individual, particle, ...



# **Main Characteristics of MAS**

- Autonomous/Self-Driven Agents
- Distributed Region
- Local Interactions
- Dynamic Neighbors
- Various Connections
- Conformable Behaviors

## Outline



# Modeling, Analysis, Control of MAS: An Overview

Consensus of MAS: Several Typical Cases

Conclusions

# Modeling, Analysis, and Control of MAS: An Overview

### Modeling

—Vicsek, Boid, Couzin-Levin, Complex Dynamical Networks
 Analysis

--Consensus, Convergence, Adaptation, Decision-Making, ...

Control

-Leader-Follower, Pinning Control, Formation Control,

**Cooperation, Intervention, ...** 

#### **A Unifying Framework of MAS**



**Collective Behaviors: Modeling, Analysis and Control** 16

Several Representative Models: Boids Flocking Model (1987)

**Three Basic Local Rules: (The First Model)** 

Alignment: Steer to move toward the average heading of local flockmates

**Separation:** Steer to avoid crowding local flockmates

**Cohesion:** Steer to move toward the average position of local flockmates



C. W. Reynolds, Flocks, herd, and schools: A distributed behavioral model, Computer Graphics, 1987, 21(4): 15-24.<sub>17</sub>

Several Representative Models: Vicsek Particles Model (1995)

One Basic Local Rule: Alignment (The Simplest Model)
Position:

$$x_i(t+1) = x_i(t) + v_i(t)\Delta t$$

≻Heading:

$$heta(t+1) = < heta(t)>_r + \Delta heta$$

T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Sochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 1995, 75 (6): 1226.

### Several Representative Models: Vicsek Particles Model (1995)

(a) Initial: Random positions/velocities

(ρ = 6.12)

(b) Low density/noise: grouped, random

(ρ = 0.48)

(c) High density/noise: correlated, random<sup>(ρ)</sup>

(ρ = 6.12)

(d) High density / Low noise (ρ = 12)

ordered motion



T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, O. Sochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 1995, 75 (6): 1226. Several Representative Models: Couzin-Levin Model (2005)



I. D. Couzin, J. Krause, N. R. Franks, & S. M. Levin, Effective leadership and decision-making in animal groups on the Move, Nature, 2005, 433: 513-516.

# **Analysis of MAS: Main Approaches**

### Numerical Simulations

-Simulation Platform, Mathematical or Computer Model

#### Theoretical Analysis

——Lyapunov Function, Eigenvalue Computation, Convex Analysis, Stochastic Approximation, Graph Theory, ...

### Experimental Observation

——Fish, Locust, Bird, Ants, ...

### **Numerical Simulations**



### **Simulation Platform of Collective Behaviors**

| Simulation Hod                                                                | el         |                         |         |               |         |                 |
|-------------------------------------------------------------------------------|------------|-------------------------|---------|---------------|---------|-----------------|
| Tatal Nam                                                                     |            | (1.1.1 W.; 1.11         |         | P. 16         |         | Result          |
| lotal Mum.                                                                    | 100        | GIODAL Meighti          | 0.5     | k opper       | 10000.0 | r               |
| Informed1 Num.                                                                | 2          | Global Weight2          | 0.5     | R Step        | 10.0    |                 |
| Informed2 Num.                                                                | 50         | Max Weight              | 0.4     | TtlNum Upper  | 100     | Accuracy        |
| Body Length                                                                   | 5          | Weight Inc. by          | 0.0     | TtlNum Step   | 1       | M Agampagy      |
| Speed                                                                         | 1.0        | Weight Dec. by          | 0.0     | InfNum1 Upper | 2       |                 |
| Max Turning Speed                                                             | 114.591559 | Weight Adjust Angle     | 10.0    | InfNum1 Step  | 1       | rsplit          |
| Zone of Peception                                                             | 6.0        | Global Vector           | 1.0 0.0 | InfNum2 Upper | 50      |                 |
| Zone of Deflection                                                            | 1.0        | Replicate Num.          | 400     | InfNum2.Step  | 1       | vgroup          |
| Angle of Perception                                                           | 360.0      | Time steps              | 1000    | Beta Upper    | 0.6     | Avg Flongstion  |
| Beta                                                                          | 0.6        | Time Inc.               | 0.1     | Beta Step     | 0.04    |                 |
| Bottom Left                                                                   | 30.0 30.0  | Angle Error Std.        | 0.01    | Wght1 Upper   | 0.5     | Avg. Rcen_org   |
| Top Right                                                                     | 40.0 40.0  | Global Vector Error Std | 0.0     | Wght1 Step    | 0.04    |                 |
| Circle Center                                                                 | 40.0       | gv_error_mean           | 0.0     | Wght2 Upper   | 0.5     |                 |
| Circle Radius                                                                 | 10.0       | Informed 2 Differ. Std. | 0.0     | Wght2 Step    | 0.04    | Display Compute |
| Target Direction                                                              | 1.0 0.0    | Target Point 1          | 10000.0 | Theta Upper   | 180     | Rep Rup Evit    |
| Theta                                                                         | 5.0        | Target Point 2          | 0.0 0.0 | Theta Step    | 5       | LATC            |
| R_feed1                                                                       | 0.0        | R_feed2                 | 0.0     |               |         |                 |
| Target Type Target Num Target Point Distribution Considering Group Split      |            |                         |         |               |         |                 |
| C directio C point C 1 C 2 C line C round C yes C no                          |            |                         |         |               |         |                 |
| Initial Area Output                                                           |            |                         |         |               |         |                 |
| ● square ⊂ circle 🔽 Histo 🔽 Elongation 🗆 Ak 🦳 Bk 🦳 C 🦳 Rcen_org 🔲 Group Theta |            |                         |         |               |         |                 |
| Model Selection                                                               |            |                         |         |               |         |                 |
| C Lain C Rule 1 C Rule 2 C Rule 3 C Rule 4                                    |            |                         |         |               |         |                 |

**J. Lü**, J. Liu, I. D. Couzin, S. A. Levin, Emerging collective behaviors of animal groups, WCICA, 2008, pp. 1060-1065.

### **Theoretical Analysis**

Simplification of Vicsek model by linearization:

$$\theta_i(t+1) = \frac{1}{|N_i(t)|} \sum_{j \in N_i(t)} \theta_j(t)$$

A. Jadbabie, J. Lin, and A.S. Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Automat. Contr., 2003, 48(6): 988-1001

#### Analysis of this model is based on Wolfowitz Theorem:

Given a set of finite number of SIA matrices, if any finite products generated from this set is SIA, then any infinite products generated from this set is convergent

J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices, Proc. Amer. Math. Soc, 1963, 15: 733-737.

### **Continuous-Time vs. Discrete-Time**

#### Fixed Topology

- Continuous-Time:
  - Lyapunov Function, Eigenvalue Computation
- Discrete-Time:

Lyapunov Function, Eigenvalue Computation

- Switching topology
  - Continuous-Time:
    - **Lyapunov Function**
  - Discrete-Time: [Nonexistence of quadratic Lyapunov function]

#### **Convex Analysis, Stochastic Approximation, Graph Theory**

A. Olshevsky, J. N. Tsitsiklis, On the nonexistence of quadratic Lyapunov function for consensus algorithms, *IEEE* Trans. Automat. Contr., 2008, 53(11): 2642-2645.

### **Experimental Observation**



Fish Migration / Motion

- Locust Breeding
- Bird Migration



# **Control of MAS: Main Approaches**

- Leader-Follower Control
- Coordinated Control
  - Swarming, Consensus, Flocking, ...
- Data Traffic Control
  - Shortest-Path, Betweenness, ...
- Switch Control
  - Switch Rule, Switch Times, ...
- Pinning Control
  - Selective Scheme, Network Structure, Node Dynamics, ...

#### Intervention



## Outline

#### Introduction

### Modeling, Analysis, Control of MAS: An Overview

### **Consensus of MAS: Several Typical Cases**

#### Conclusions

### **Consensus of MAS: Several Typical Cases**

#### CASE I: Cluster Consensus of Discrete-Time MAS

#### CASE II: Consensus of Discrete-Time MAS with Nonlinear Transmission

 CASE III: Infinite Products of General Stochastic Matrices

### **Jointly Connected Graphs**



### **The Period of A Graph**

For any node of a strongly connected graph, the GCD (<u>Greatest Common Divisor</u>) of the lengths of all paths starting from this node and ending in the same node is called <u>the period of this graph</u>.

The following graph has period 3.



## **CASE I: Cluster Consensus of Discrete-Time MAS**

Model Description

$$x_i(t+1) = \sum_{j=1}^{N} a_{ij}(t) x_j(t), \quad i = 1, 2, ..., N.$$
 (2)

• **Definition of Cluster Consensus: If there exist** *k* **different sets**  $\{V_r\}_{r=0}^{k-1}$  **with**  $V_i \neq V_j$  **for any**  $i \neq j$  **and**  $\bigcup_{r=0}^{k-1} V_r = V$ , **such that**  $\lim_{t\to\infty} |x_i(t) - x_j(t)| = 0, \quad \forall i, j \in V_r.$ 

Then (2) reaches cluster consensus.

### **Two Basic Questions**

#### • How to determine the network clusters?

### What conditions can MAS reach consensus?

• Cluster Factorization Algorithm: Given a strongly connected graph  $G = \{V, E\}$  with period d. For a given node  $i \in V$  and another node  $j \in V$ , let the length of a path from node i to node j be  $d_j$ . If  $d_i \equiv r \pmod{d}$ , then  $j \in V_r$  where  $0 \le r < d$ .



**A Typical Example of Cluster Factorization** 

### **Main Result**

### **Theorem 1:** If G(A) is fixed and has period d, $\inf_{a_{ij}(t)>0,t\geq0} a_{ij}(t)\geq\alpha$ , then MAS (2) reaches d-cluster consensus.

Y. Chen, J. Lü, F. Han, X. Yu, On the cluster consensus of discrete-time multi-agent systems, Syst. Contr. Lett., 2011, 60(7): 517-523.

### An Example



6 agents can be classified into the following three clusters:  $V0 = \{1, 6\}, V1 = \{2, 4\}, V2 = \{3, 5\}$  and also reach cluster consensus .

# **CASE II: Consensus of Discrete-Time MAS with Nonlinear Transmission**

#### **Model Description:**

$$x_i(t+1) = \sum_{j=1}^{N} a_{ij}(t) f_{ij}(x_j(t-\tau_j^i(t))), \quad i = 1, 2, ..., N.$$
 (2)

### $f_{ij}(\bullet)$ Nonlinear Interaction $a_{ij}(t)$ Coupling Coefficients $\tau_j^i(t)$ Time Delays

### **One Basic Question**

#### Definition of consensus:

$$\lim_{t\to\infty} \|x_i(t) - x_j(t)\| = 0$$

for any  $i, j \in V$ .

#### Basic Question: What kind of nonlinear functions, time delays and topology structures can make MAS (2) reach consensus?

## **A Class of Nonlinear Functions**

- *f* belongs to *F* if the following conditions are satisfied:
- **1.** f is continuous and  $f \in \mathbb{R}^m \to \mathbb{R}^m$
- **2.** f is defined on some convex set  $\mathcal{B} \subseteq \mathbb{R}^m$  and  $f(x) \in B$  when  $x \in B$ .
- **3.** There exists a bounded convex set  $U \subseteq B$  such that f(x) = x for  $x \in U$  and  $f(x) \neq x$  for d(f(x),U) < d(x,U).

### Assumptions

A1.  $f_{ij} \in F$  for any  $i, j \in V$ , and  $\{f_{ij}\}_{i,j=1}^{n}$  share two common sets B and U. A2.  $\{G(t)\}_{t=0}^{\infty}$  is jointly connected. A3.  $0 \le \tau_{j}^{i}(t) < B$  for any  $i \ne j$ ,  $\tau_{i}^{i}(t) = 0$  for any  $i \in V$ . A4.  $a_{ij}(t) \ge 0, a_{ii}(t) > 0, \sum_{j=1}^{N} a_{ij}(t) = 1$  for any  $i, j \in V$ ,  $\inf_{a_{ij}(t) > 0, t \ge 0} a_{ij}(t) \ge \alpha$ for some  $\alpha \in (0, \frac{1}{2}]$ .



# **Theorem 2:** If the above Assumptions 1-4 hold for MAS (2), then MAS (2) reaches consensus.

#### Y. Chen, J. Lü, Z. Lin, Consensus of discrete-time multiagent systems with nonlinear transmission, Automatica, 2012. (Provisionally Accepted)

### An Example

#### **Consider the following MAS**

$$\begin{cases} \dot{x}_i(t) = v_i(t), \\ \dot{v}_i(t) = u_i(t). \end{cases}$$

#### The controller is given by

$$u_i(t) = -\gamma_0 v_i(t_k) + \gamma_1 \sum_{j=1, j \neq i}^n a_{ij}(t_k) (f_{ij}(x_j(t_k)) - x_i(t_k))$$

where  $t \in [t_k, t_{k+1})$ .

The above MAS can be transformed into MAS (2) via a simple linear transformation and consensus criteria can be obtained subsequently.

**CASE III: Infinite Products of General Stochastic Matrices with Its Application to Consensus of MAS** 

Background: Second order system is one of the basic mechanical systems. And the interconnected second order MAS with dynamical topology is a fundamental class of MAS.

Question: Second order MAS with <u>fixed topology</u> can be analysed by calculating <u>eigenvalues</u> or constructing <u>smooth Lyapunov</u> functions. How to analyse <u>second order MAS with dynamical topology</u>?

### **Some Known Results (1)**

Common Quadratic Lyapunov Function

MAS does not exist a common quadratic Lyapunov function under some specific conditions.

A. Olshevsky, J. N. Tsitsiklis, On the nonexistence of quadratic Lyapunov function for consensus algorithms, IEEE Trans. Automat. Contr., 2008, 53(11), 2642-2645.

### **Some Known Results (2)**

For MAS, if there exist two system matrices with different left perron eigenvector, there does not exist a convex, smooth, and closed common Lyapunov function.

R. K. Brayton and C. H. Tong, Stability of dynamical systems: Aconstructive approach, IEEE Trans. Circits Syst., 1979, 26(4): 224-234.

### **Mathematical Model**

#### Model Description

$$\begin{cases} x_i(t_{k+1}) = x_i(t_k) + h_k x_i(t_k), \\ v_i(t_{k+1}) = v_i(t_k) + h_k u_i(t_k), \end{cases}$$
(3)

#### where

$$u_{i}(t_{k}) = \alpha \sum_{j \in N_{i}(t_{k})} a_{ij}(t_{k})(x_{j}(t_{k}) - x_{i}(t_{k})) + \beta \sum_{j \in N_{i}(t_{k})} a_{ij}(t_{k})(v_{j}(t_{k}) - v_{i}(t_{k})).$$

Here,  $A_k = (a_{ij}(t_k))_{i,j=1}^N$  are stochastic matrices.

### **An Open Problem**

#### Definition of consensus:

 $\lim_{t \to \infty} ||x_i(t_k) - x_j(t_k)|| = 0,$  $\lim_{t \to \infty} ||v_i(t_k) - v_j(t_k)|| = 0,$ for any  $i, j \in V$ .

Basic Question: What kind of <u>switching topology</u> and <u>sampling interval</u> can guarantee the consensus of MAS (3) ?

### **Assumptions 1 and 2**

#### Consensus <u>without constraint on self-loops</u>

**Assumption 1:** For the matrices  $A_k = (a_{ij}(t_k))_{i,j=1}^N$ , there is  $\inf_{a_{ij}(t)>0,t\geq 0} a_{ij}(t_k) \geq \gamma$  for some  $\gamma \in (0,1)$ ,  $a_{ij}(t_k)^2 + a_{ji}(t_k)^2 \neq 0$  for any  $k \geq 1$ 

**Assumption 2: The discretization step length**  $h_k$  satisfy

$$h_k \in [\frac{1}{(2+\gamma)\beta - \mu^{-1}}, \frac{1-\delta}{\beta + \mu^{-1}}]$$

where  $\mu = \frac{\beta}{\alpha}$  and  $\delta \in (0,1)$ .

### Main Result (1)

# Theorem 3: If Assumptions 1 and 2 hold, then the MAS (3) reaches consensus.

Y. Chen, J. Lü, X. Yu, Z. Lin, Infinite products of a class of general stochastic matrices with their application to consensus of multi-agent systems, SIAM Journal on Control & Optimization, 2012. (Second Review, Minor Modification)

### **Assumptions 3 and 4**

#### • Consensus with <u>constraint on the self-loops</u> Assumption 3: Each $A_k$ is diagonal dominant and $\eta(A_k) < \min\{1-2\frac{\alpha}{\beta^2}, 1-\delta - \frac{\alpha}{\beta^2}(2-\delta)\}$ for some $\delta \in (0,1)$ , where

$$\eta(A) = \frac{1}{2} \max_{i,j} (a_{ii} + a_{jj} - a_{ij} - a_{ji} + \sum_{k \neq i,j} |a_{ik} - a_{jk}|)$$

**Assumption 4:** The discretization step length  $h_k$  satisfying

$$h_k \in \left[\frac{\delta}{(1-\eta(A_k))\beta - 2\mu^{-1}}, \frac{2-\delta}{\beta(1+\eta(A_k))}\right]$$
  
where  $\mu = \frac{\beta}{\alpha}$  and  $\delta \in (0,1)$ .

### Main Result (2)

# Theorem: If Assumptions 3 and 4 hold, then the MAS (3) reaches consensus.

Y. Chen, J. Lü, X. Yu, Z. Lin, Infinite products of a class of general stochastic matrices with their application to consensus of multi-agent systems, SIAM Journal on Control & Optimization, 2012. (Second Review, Minor Modification)

### **Main Ideas of Proof**

It is often difficult to construct a traditional smooth Lyapunov function to analyse the stability of MAS with switching topology

We construct a polytope in 2N dimensional space and demonstrate that the network dynamics contracts along the polytope

## Outline

#### Introduction

### Modeling, Analysis, Control of MAS: An Overview

### **Consensus of MAS: Several Typical Cases**

#### Conclusions

# Conclusions

- Some new results on consensus of discretetime MAS are introduced
- Some new methods for coping with dynamical topology and nonlinear interactions are proposed
- These methods can be further generalized to consensus of other MAS

### **Some Future Works**

- Further investigation of non-convex MAS models, trying to find a more universal method to tackle this kind of problems
- How to cope with <u>dynamical topology</u> effectively?
- How to cope with complex <u>nonlinear interactions</u> efficiently?
- How to cope with <u>environment uncertainty</u>?

# Thank You Very Much !

URL: <u>http://lsc.amss.ac.cn/~ljh</u>

Email: jhlu@iss.ac.cn