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¢ Some Examples
¢ What is Multi-Agent Systems (MAS)?

& Main Characteristics of MAS



Examples: Bird Flock
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Examples: Fish Flock




Rotating Ants Mill

Examples




Examples: Bacteria Group




Examples: Social Systems
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Examples: Formation Control
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@ The problem: Maintaining a formation in 2D or 3D

4 Autonomous agent ﬁ
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Examples: Group Robots
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What is Multi-Agent Systems (MAS)?
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¢ Agents
Insect, bird, fish, people, robot, ...
node, individual, particle, ...

¢ Local Rules
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Main Characteristics of MAS
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¢ Autonomous/Self-Driven Agents
¢ Distributed Region

¢ Local Interactions

¢ Dynamic Neighbors

¢ Various Connections

¢ Conformable Behaviors
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Outline
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¢ Modeling, Analysis, Control of MAS: An
Overview
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Modeling, Analysis, and Control of
MAS: An Overview

¢ Modeling
—Vicsek, Boid, Couzin-Levin, Complex Dynamical Networks

¢ Analysis

—Consensus, Convergence, Adaptation, Decision-Making, ...
¢ Control

—L_eader-Follower, Pinning Control, Formation Control,

Cooperation, Intervention, ...
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A Unn‘ymg Framework of MAS
V /

Collective Behaviors: Modeling, Analysis and Control 16




Several Representative Models:
Boids Flockmg Model (1987)

Three Basic Local Rules (The First Model)

Alignment: Steer to move toward the average heading of
local flockmates

Separation: Steer to avoid crowding local flockmates

Cohesion: Steer to move toward the average position of

local flockmates

C. W. Reynolds, Flocks, herd, and schools: A distributed
behavioral model, Computer Graphics, 1987, 21(4): 15-24. ,



Several Representative Models:
Vicsek Particles Model (1995)
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One Basic Local Rule: Alignment (The Simplest Model)
» Position:

ZB,;(t - 1) = .’Bz(t) -+ ’l)i(t)At

»Heading:

O(t +1) =< 0(t) >, +AB

T. Vicsek, A. Czirok, E. Ben-Jacob, 1. Cohen, O. Sochet, Novel type of phase
transition in a system of self-driven particles, Phys. Rev. Lett., 1995, 75 (6):
1226. 18



Several Representative Models:
Vicsek Particles Model (1995)
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T. Vicsek, A. Czirok, E. Ben-Jacob, 1. Cohen, O. Sochet, Novel type of phase

transition in a system of self-driven particles, Phys. Rev. Lett., 1995, 75 (6):
1226. 19



Several Representative Models:
Couzin- Levm Model (2005)

Local Rules: Separatlon Cohe lon, Alighment
Updating rules: (Inforrsation)
1) If r(2,7) < a, then
c;j () —cf(t)
di(t + At) = Z BIGET (0]
2) If a < r(2,7) < p, then
d (t _I_ At) - Z g(t) C’L(t) _I_ Z j(t) 7@1:‘1““ X
e (B)—cq ()] To; ()] e
3) Consider 1nformat10n directlon

/ _ di(t+At)twg,
di(t + At) = |d; (t+At)+wg;|

I. D. Couzin, J. Krause, N. R. Franks, & S. M. Levin, Effective leadership
and decision-making in animal groups on the Move, Nature, 2005, 433:
513-516. 20




Analysis of MAS: Main Approaches

¢ Numerical Simulations
—Simulation Platform, Mathematical or Computer Model

¢ Theoretical Analysis

—Lyapunov Function, Eigenvalue Computation, Convex
Analysis, Stochastic Approximation, Graph Theory, ...

¢ Experimental Observation

Fish, Locust, Bird, Ants, ...

21



Numerical Simulations

The sound of many hands clal'piln:gw“q ‘ Learn I n g

¢ Adaptation

¢ Cooperation

¢ Competition
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Simulation Platform of Collective Behaviors
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Theoretical Analysis

¢ Simplification of Vicsek model by linearization:

1
oD =5 01,220

A. Jadbabie, J. Lin, and A.S. Morse, Coordination of groups of mobile autonomous agents
using nearest neighbor rules, IEEE Trans. Automat. Contr., 2003, 48(6): 988-1001

¢ Analysis of this model is based on Wolfowitz Theorem:

Given a set of finite number of SIA matrices, if any finite
products generated from this set is SIA, then any infinite
products generated from this set is convergent

J. Wolfowitz, Products of indecomposable, aperiodic, stochastic matrices, Proc. Amer.

Math. Soc, 1963, 15: 733-737.
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Continuous-Time vs. Discrete-Time

¢ Fixed Topology
m Continuous-Time:
Lyapunov Function, Eigenvalue Computation
m Discrete-Time:
Lyapunov Function, Eigenvalue Computation

¢ Switching topology
m Continuous-Time:
Lyapunov Function
m Discrete-Time: [Nonexistence of quadratic Lyapunov function]
Convex Analysis, Stochastic Approximation, Graph Theory

A. Olshevsky, J. N. Tsitsiklis, On the nonexistence of quadratic Lyapunov function for

consensus algorithms, IEEE Trans. Automat. Contr., 2008, 53(11): 2642-2645.
25



Experimental Observation
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Martin County Artificial Reefs

www.martinreefs.com

¢ Fish Migration / Motion
¢ Locust Breeding
¢ Bird Migration
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Control of MAS: Main Approaches
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¢ Leader-Follower Control
¢ Coordinated Control
Swarming, Consensus, Flocking, ...
¢ Data Traffic Control
Shortest-Path, Betweenness, ...
¢ Switch Control
Switch Rule, Switch Times, ...
¢ Pinning Control

Selective Scheme, Network Structure, Node Dynamics, ...

¢ Intervention
e...

27



Outline

¢ Consensus of MAS: Several Typical Cases
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Consensus of MAS: Several Typical Cases

| -

¢ CASE I: Cluster Consensus of Discrete-Time MAS

¢ CASE II: Consensus of Discrete-Time MAS with
Nonlinear Transmission

¢ CASE I11I: Infinite Products of General Stochastic
Matrices

29



Jointly Connected Graphs
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The Period of A Graph

|

€ For any node of a strongly connected graph, the
GCD (Greatest Common Divisor) of the lengths
of all paths starting from this node and ending In
the same node Is called the period of this graph.

€ The following graph has period 3.




CASE I: Cluster Consensus of
Discrete-Time MAS

[

€ Model Description
N
X (t+1)=> a (t)x ), i=12..,N. (2)
j=1

© Definition of Cluster Consensus: If there existk different sets
{v.}% with V, 2V, forany j=« jand UV, =v, such that

lim,_,,, | %)=, (®) =0, Vi, jeV,.

Then (2) reaches cluster consensus.

32



Two Basic Questions
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& How to determine the network clusters?

& \What conditions can MAS reach consensus?



@ Cluster Factorization Algorithm: Given a strongly connected
graph G={V,E} with period d . For a given node 1€V and
another node jev , let the length of a path from node I to
node | be d;. If d,=r(mod d), then j eV, where 0<r<d,

A Typical Example of Cluster Factorization
34



Main Result

|

Theorem 1: Ifc(Ais fixed and has
period d , inf, 00> | then MAS
(2) reaches d-cluster consensus.

Y. Chen, J. LU F. Han, X. Yu, On the cluster consensus of

discrete-time multi-agent systems, Syst. Contr. Lett., 2011,
60(7): 517-523.
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An Example
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6 agents can be classified into the following three
clusters: VO ={1, 6}, V1 ={2, 4}, V2 ={3, 5} and

also reach cluster consensus .
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CASE Il: Consensus of Discrete-Time
MAS with Nonlinear Transmission

[ e

Model Description:

N .
%(t+1) = Zaij (t) fij (Xj (t _T} t)), i=12..,N. (2)
j=1
f;(®) Nonlinear Interaction
g; (t) Coupling Coefficients
7, (t) Time Delays

37



One Basic Question
@ Definition of consensus:
im_,, || %(t)—x;(t)[|=0
foranyi,jev .

@ Basic Question: What kind of nonlinear functions,
time delays and topology structures can make
MAS (2) reach consensus?

38



A Class of Nonlinear Functions
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f belongs to F If the following conditions are
satisfied:

1. f 1scontinuous and s € R™— R™

2. f 1sdefined on some convex set B < R™ and
f(x)eB When xeB .

3. There exists a bounded convex set u =B such that
f()=x for xeU and f(x)=x for d(f(x)U)<d(xVU) .

39



Assumptions

[ o S

Al f.eF foranyl, jeV  and {f},, share two
common setsB and U .

A2. {G()}°, Is jointly connected.

A3. o<ri(ty<Bforany iz , fm=o0 foranyieV.

Ad. a(t)=0, a(t)>0, Za.,(t) Lforanyi,jev , inf, .08 0=«
for some ae(o ]

40



Main Result

Theorem 2: If the above Assumptions 1-4 hold for
MAS (2), then MAS (2) reaches consensus.

Y. Chen, J. LU Z. Lin, Consensus of discrete-time multi-
agent systems with nonlinear transmission, Automatica, 2012.
(Provisionally Accepted)
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An Example

Consider the following MAS
% (1) =v; (),
{Vi (t) = u; (1)

The controller iIs given by

n

U; (t):_VoVi (tk)"‘?/l Z aij (tk)(fij (Xj (tk))_xi (tk))

j=1, j=i
where telt.t.,) .
The above MAS can be transformed into MAS (2)

via a simple linear transformation and consensus
criteria can be obtained subsequently.
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CASE I11: Infinite Products of General
Stochastic Matrices with Its Application to
Consensus of MAS

@®Background: Second order system is one of the basic
mechanical systems. And the interconnected second
order MAS with dynamical topology 1Is a
fundamental class of MAS.

@ Question: Second order MAS with fixed topology can
be analysed by calculating eigenvalues or
constructing smooth Lyapunov functions. How to
analyse second order MAS with dynamical topology?
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Some Known Results (1)

€4 Common Quadratic Lyapunov Function

MAS does not exist a common quadratic Lyapunov
function under some specific conditions.

A. Olshevsky, J. N. Tsitsiklis, On the nonexistence of
guadratic Lyapunov function for consensus algorithms,
IEEE Trans. Automat. Contr., 2008, 53(11), 2642-2645.
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Some Known Results (2)

For MAS, if there exist two system matrices with
different left perron eigenvector, there does not
exist a convex, smooth, and closed common

Lyapunov function.

R. K. Brayton and C. H. Tong, Stability of dynamical
systems: Aconstructive approach, IEEE Trans. Circits Syst.,

1979, 26(4): 224-234.
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Mathematical Model
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€ Model Description

{Xi (t.) = % (t) +hx (), 3)
Vi (tk+1) =V, (tk) + hkui (tk)1
where

Ut)=c D at)X ) -xEN+8 > a;t)V,t)-v(t)).

jeN; (t) JjeN; (t)

Here, A =(a;t))! .. are stochastic matrices.

46



An Open Problem

|

& Definition of consensus:
lim,_,, [[ x; (t,) — X (t) =0,
Iimt—)oo ”Vi (tk)_vj (tk) =0,
for anyi,jev .

@ Basic Question: What kind of switching topology
and sampling interval can guarantee the consensus
of MAS (3) ?
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Assumptions 1 and 2

|

€ Consensus without constraint on self-loops

Assumption 1: For the matrices A =(a;(t,)); . , there is
im:aij (t)>0,t>0 a'ij (tk) 2 Y for some y<(0,1) , & (tk)2 +4; (tk)2 #0 fOI’ anyk >1

Assumption 2: The discretization step length h,_satisfy
1 1-5

C+y)p-u ’ﬁﬂfl]

where «-£ and s < (0,1) -

h €]

48



Main Result (1)

Theorem 3: If Assumptions 1 and 2 hold,
then the MAS (3) reaches consensus.

Y. Chen, J. LU X. Yu, Z. Lin, Infinite products of a class of
general stochastic matrices with their application to
consensus of multi-agent systems, SIAM Journal on Control
& Optimization, 2012. (Second Review, Minor Modification)
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Assumptions 3 and 4
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€ Consensus with constraint on the self-loops

Assumption 3: Each A Is diagonal dominant and
ifl-2-= 1-6-—(2-65
7(A) <min{ 5 ﬂz( )}

for some 5<(0,1) , where

1
n(A) :Emaxi,j(aii +a; — & —a; +kz_| Qe — Ay )
#, ]

Assumption 4: The discretization step length h_satisfying

) 26
A-n(A)B-2u™ Bl+n(A))
where -2 and s < (0,1) -

h el ]
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Main Result (2)

Theorem: If Assumptions 3 and 4 hold, then
the MAS (3) reaches consensus.

Y. Chen, J. LU X. Yu, Z. Lin, Infinite products of a class of
general stochastic matrices with their application to consensus
of multi-agent systems, SIAM Journal on Control &
Optimization, 2012. (Second Review, Minor Modification)
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Malin ldeas of Proof

[

¢ It Is often difficult to construct a traditional
smooth Lyapunov function to analyse the
stability of MAS with switching topology

@ \We construct a polytope in 2N dimensional
space and demonstrate that the network
dynamics contracts along the polytope



¢ Conclusions

Outline
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Conclusions
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€ Some new results on consensus of discrete-
time MAS are introduced

€ Some new methods for coping with
dynamical topology and nonlinear
Interactions are proposed

€ These methods can be further generalized to
consensus of other MAS



Some Future Works

[

¢ Further investigation of non-convex MAS models,
trying to find a more universal method to tackle
this kind of problems

¢ How to cope with dynamical topology effectively?

¢ How to cope with complex nonlinear interactions
efficiently?

¢ How to cope with environment uncertainty?
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Lhank You. Very Much !

URL.: http://Isc.amss.ac.cn/~ljh

Email: jhlu@iss.ac.cn
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