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Network Model 

Linearly coupled network: 

a general assumption is that f (.) is Lipschitz 

A:  If node  i  connects to node  j  (j ≠ i), then aij = aji = 1; else, aij = aji = 0; also, 

coupling matrices (undirected): 

 Laplacian matrix:  
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Network Synchronization 

complete state 

synchronization:  
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Preliminary 

 Variational Equation: 

 

 

     where               is Jacobian (e.g., uniformly bounded)  

     The maximum Lyapunov exponent of the equation is called 

the master stability function.  

 

 Laplacian has zero row-sum 

       

     Spectrum: 
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       (i)   inner-linking matrix H (fixed) 

       (ii)  outer-linking matrix A (varying) 
 

       Synchronizability in terms of (ii): 
 

       1. unbounded region (X.F. Wang and G.R. Chen, 2002) 
 
 

       2. bounded region (M. Banahona and L.M. Pecora, 2002)  
 

 

       3. union of several disconnected regions 

 
    (A. Stefanski, P. Perlikowski, and T. Kapitaniak, 2007) 

              (Z.S. Duan, C. Liu, G.R. Chen, and L. Huang, 2007-2009)  

NN   212 0,/

N  212 0,

What affects the synchronizability 

Spectral gap 

Eigenratio 
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What is the idea 














11

11
Eigenvalues of L: 020 21  

)(0)( 2

2 


tete
tOne state component: 

Bigger          Faster convergence 2

0)(,0)(,0)()( 1221  tetetete

Error equation: 

 
Aee 



8  

Question (for example) 

Given Laplacian: 

 

 

                                             

 

 

 

 

Q: How to replace 0 and -1 while keeping the connectivity 

(and all row-sums = 0), such that           = maximum ?  
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Answer 

*

3 1 0 1 0 1

1 3 1 0 1 0

0 1 3 1 0 1

1 0 1 3 1 0
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Observation: Homogeneous + Symmetrical 
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Problem 

 With the same numbers of node and edges, while keeping the 

connectivity, what kind of network has the best possible 

synchronizability? 

 Observation: Large eigenratio  Large spectral gap 

 

 

 

 

 

 

 Computationally, this is NP-hard 
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Progress 

 Nishikawa et al., Phys. Rev. Lett. 91, 014101(2003) – regular 

networks with uniform small (node or edge) betweenness [we 

found: edge betweenness is more important than node 

betweenness] 

 Donetti et al., Phys. Rev. Lett. 95, 188701(2005) Entangled 

networks have biggest eigenratios [we found: not necessarily] 

 Donetti et al., J. Stat. Mech.: Theory and Experiment 8, 

1742(2006), algorithm based on algebraic graph theory; big 

spectral gap  big eigenratio [we found: the opposite] 

 Zhou et al., Eur. Phys. J. B. 60, 89(2007), algorithm based on 

smallest clustering coefficient 

 Hui, Ann Oper. Res., July (2009), algorithm based on entropy  

 Xuan et al., Physica A 388, 1257(2009), algorithm based on 

short average path length 

 Mishkovski et al., ISCAS, 681(2010), fast generating algorithm  
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Comparison of Synchroniability 

Guan et al., Chaos 18, 013120(2008), N = 100 

 

 

 

 

 

  A: Regular networks (with degree-preserved link switching) 

  B: Random Networks 

  C: Small-world Networks 

2Nr  
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Recent Discoveries 

Biological neural networks, Phys 

Reports 2011 – NN of 16 cells  

 

 k-cell, Nature Phys 2010 - 

    more important than hubs and 

high-betweenness nodes in 

epidemics 

    

Homogenous networks, Nature 

2011 - more advantageous for 

control 
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Our New Model 

  Homogeneity + Symmetry 

  Same node degree 

  Shortest average path length 

  Shortest path-sum 

  Longest girth [girth = shortest loop of a node] 
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Optimization 

  Illustration: 

     

     
     

 

 

 

 

 

 

 
    Grey：networks with same numbers of nodes and edges 

    Green：degree-homogeneous networks 

    Blue：networks with maximum girths 

    Pink：possible optimal networks 

    Red：near homogenous networks 

White：Optimal 

homogeneous  
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Our Algorithm (Step A, B, C) 

Consider the case of average node degree k = integer 
 

 Step A - Building Node-degree Homogenous Networks: 
 

 A1. Initially: given a fully-connected graph of k +1 nodes. 
 

     A2. In each step, if k = odd, then add 2 nodes with (k1)/2 

edges connecting to the existing network；if k = even, then 

add 1 node with k /2 edges connecting to the existing networks.    
      

     A3. Attachment: For non-identical node degrees, use anti-

preferential attachment; for identical node degree, use random. 
      

     A4. For every node with degree bigger than the average node 

degree, randomly select one old edge to do rewiring, so as to 

obtain a homogenous node degree sequence. 
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Our Algorithm (continued) 

Step B - Generating Networks with Longest Girth: 
 

B1. Ordering. List all random node-degree homogeneous 

networks generated in steps A1-A4, according to their girths 

in decreasing order (if equal, list their average 

path-lengths in increasing order; if path-lengths are also 

equal, list their automorphisms in decreasing order). 
 

B2. Reducing. If two networks have same girth sequences, 

path-sum sequences and automorphism numbers, then only 

one is kept for further iterations. 
 

B3. Iterating. Starting from the first network in the above list, 

return to steps A2-A4, until reaching the end of the list or 

meeting a pre-set stopping rule, to obtain all networks with 

the longest girth. 
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Our Algorithm (continued) 

Step C - Finding Optimal Homogeneous Networks: 
 

 

C1. For each network with the longest girth obtained above, 

calculate its every node’s path-sum, network diameter, and 

average path-length. 

 

C2. Check the homogeneities of girth and path-sum for every 

network obtained above. Keep those homogeneous networks 

with minimum ℓ∗ and those non-homogeneous with ℓ < ℓ∗/(N−1) 

as candidates. 

 

C3. Calculate the eigen-ratios of all the candidates in C2 and 

find the biggest one, which is an optimal homogeneous network. 
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Optimal Networks 
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Optimal Networks  
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Optimal Networks 

 Resulting Networks (first 14 solutions) 

 

 

 

 

 

  Except: 

    Network with 20 nodes: same girth, but not path-sum  

    Network with 22 nodes – both girth and path-sum are not  
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Conclusion 

Optimal network topology (in the sense of having the 

best possible synchronizability) should have 

o Homogeneity (with same node degree) 

o Symmetrical structure 

o Shortest path-sum 

o Longest girth 
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Thank You ! 


