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Synchronization

Consider a series of dynamic processes {x1(t), · · · , xm(t)} to
describe the dynamics of network system with m agents (nodes).
(Complete) Synchronization is defined as:

lim
t→∞
‖xi(t)− xj(t)‖ = 0

holds for all i 6= j.



Cluster Synchronization

Divide the set of agents, denoted by V , into disjoint clusters,
C = {C1, · · · , CK}, with the properties:

1. Cp
⋂
Cq = ∅ for each p 6= q;

2.
⋃K

p=1 Cp = V .

Define cluster-synchronization via the following aspects:

1. x(t) is bounded;

2. We say that x(t) intra-cluster synchronizes if
limn→∞ |xi(n)− xi′(n)| = 0 for all i, i′ ∈ Cp and
p = 1, · · · ,K;

3. We say that x(t)inter-cluster separates if
lim supn→∞ |xi(n)− xj(n)| > 0 holds for each pair of i ∈ Ck
and j ∈ Cl with k 6= l.



Models of dynamic network system with identical node
dynamics: discrete-time case

Start with dynamic network of discrete-time systems

xi(t+ 1) =

m∑
j=1

gijf(xj(t)), i = 1, · · · ,m, t = 1, 2, · · · ,

where xi(t) ∈ R is the state variables of agent i, f(·) is a map and
G = [gij ]

m
i,j=1 is a stochastic matrix associated with a (directed) graph

G = (V, E) with V = {1, · · · ,m} and

E = {(i, j) : gij 6= 0} ;

in particular, if f(·) = id, then it becomes

xi(t+ 1) =

m∑
j=1

gijx
j(t), i = 1, · · · ,m, t = 1, 2, · · · .

(Known as the consensus algorithm for discrete-time).



Models of dynamic network with identical node dynamics:
continuous-time case

ẋi = f(xi(t), t) +

m∑
j=1

lijΓx
j(t), i = 1, · · · ,m, t ≥ 0,

where xi(t) ∈ Rn is the state variables of agent i,
f(·, ·) : Rn × R+ → Rn is a map, Γ ∈ Rn,n denotes the inner
coupling configuration, and L = [lij ]

m
i,j=1 is the Laplacian matrix

associated with a (directed) graph G = (V, E) with V = {1, · · · ,m}
and

E = {(i, j) : lij 6= 0} ;

in particular, if f(·) = 0, then it becomes

ẋi =

m∑
j=1

lijx
j , i = 1, · · · ,m, t ≥ 0

(Known as the consensus algorithm for continuous-time case).



Models of dynamic network system with inter-cluster
non-identical dynamics: discrete-time case

Each cluster has different coupled maps:

xi(t+ 1) =

K∑
k=1

∑
j∈Ck

gijfk(xj(t)), i = 1, · · · ,m, t = 1, 2, · · · ,

where the map fk(·) is identical for agents in the same cluster k; for
the linear system with f·(·) = id, we add external inputs as follows:

xi(t+ 1) =

m∑
j=1

gijx
j(t) + Ik(t), i ∈ Ck, k = 1, · · · ,K.



Models of dynamic network system with inter-cluster
non-identical dynamics: continuous-time case

ẋi = fk(xi(t)) +

m∑
j=

lijΓx
j , i ∈ Ck, k = 1, · · · ,K,

where the map fk(·) is identical for agents in the same cluster k; for
the linear system with fk(·) = Ik(t) if i ∈ Ck, we add external inputs
as follows:

ẋi =

m∑
j=1

lijx
j(t) + Ik(t), i ∈ Ck, k = 1, · · · ,K.



Time-varying topologies

Consider a series of graph topologies, G(t) = {V, E(t)}, associated
with the coupling stochastic matrices {G(t)}∞t=1 (discrete-time) or
Laplacian matrices {L(t)}t≥0 (continuous-time)

E(t) = {(i, j) : gij(t)( or lij(t)) 6= 0}.

Consensus algorithms over time-varying coupling topologies become:

xi(t+ 1) =

m∑
j=1

gij(t)x
j(t) + Ik(t), i ∈ Ck, k = 1, · · · ,K,

and

ẋi =
m∑
j=1

lij(t)x
j + Ik(t), i ∈ Ck, k = 1, · · · ,K.



Cluster synchronization subspace

A clustering C is defined above as groups of disjoint vertex sets that
compose V .

SC = {x ∈ Rn : xi = xj for all i, j ∈ Cp with p = 1, · · · ,K},

is named cluster-synchronization subspace. It needs to be invariant
through the dynamic network systems.



Invariance of the cluster synchronization manifold

I The node dynamics fi(·) (or the input Ii(t)) is intra-cluster
identical, i.e., fi = fj (Ii(t) = Ij(t)) for all i, j ∈ Cp and all
p = 1, · · · ,K;

I The coupling matrix has inter-cluster common influence if for
each pair of p and p′,

∑
j∈Cp′

lij (or
∑

j∈Cp′
gij) is identical

w.r.t. all i ∈ Cp.

Lemma 1
If both the two conditions above are satisfied, then the
cluster-consensus subspace is invariant through the dynamic network
systems.



Cluster Hajnal diameter

Hajnal diameter is used to measure the distance to synchronization
subspace. For a matrix A, which has row vectors A1, A2, · · · , An,

∆(A) = max
i,j
‖Ai −Aj‖

By the analog way, for a given clustering C, we define the cluster
Hajnal diameter as

∆C(A) = max
p=1,··· ,K

max
i,j∈Cp

‖Ai −Aj‖

for some norm ‖ · ‖. It can be seen that ∆C(x) = 0 is equivalent to the
intra-cluster synchronization.



Cluster spanning tree and cluster scrambling

For a given clustering C = {C1, · · · , CK},
I G has cluster-spanning-trees with respect to (w.r.t.) C if for each

cluster Cp, p = 1, · · · ,K, there exists a vertex vp ∈ V such that
there exist paths in G from vp to all vertices in Cp. We denoted
this vertex vp as the root of the cluster Cp.

I G is cluster-scrambling (w.r.t. C) if for any pair of vertices
(vp1 , vp2) ⊂ Cp, there exists a vertex vk ∈ V , such that both
(vk, vp1) and (vk, vp2) belong to E .

I The cluster ergodicity coefficient (w.r.t the clustering C):

µC(A) = min
p=1,··· ,K

min
i,j∈Cp

N∑
k=1

min(gik, gjk).

It can be seen that µC(A) ∈ [0, 1] and A is cluster-scrambling (w.r.t.
C) if and only if µC(A) > 0.



Cluster Hajnal inequality

Suppose that stochastic matrices A and B that both have the same
dimension and inter-cluster common influence, then

∆C(AB) ≤ (1− µC(A))∆C(B).



Linear systems with static topology

Assign inputs as follows:

Ii(t) = αpu(t) (1)

where u(t) is a scalar function and α1, · · · , αp are inter-different
constants. For linear system,

Theorem 2
Suppose that both u(t) and

∑t
k=1 u(k) (or

∫ t
0 u(s)ds ) are bounded,

I(t) is defined by (1), and the stochastic matrix G matrix (the
Laplacian matrix L) is with inter-cluster common influence and
cluster-spanning trees. Then for any initial condition x(0), the linear
system is bounded and realizes intra-cluster synchronization:

‖x(t)‖ ≤M ∀ t, lim
t→∞
‖xi(t)− xj(t)‖ = 0 ∀ i, j ∈ Cp, p = 1, · · · ,K.

for some M .



Linear systems with time-varying topologies

The union graph across the time interval [t, t+ T ] is the graph
corresponding to

1. Discrete-time case:
∑t+T

s=t G(t)

2. Continuous-time case:
∫ t+T
t G(s)ds.

Theorem 3
If there exists L > 0 such that the union graph across any L-length
time interval has cluster spanning trees, then the linear system
realizes intra-cluster synchronization.



The cluster synchronized systems

B = [βp,q]
K
p,q=1 with

βp,q =
∑
j∈Cq

gij , i ∈ Cp

Assume intra-cluster synchronization and let yp be the synchronized
state of the p-th cluster and y = [y1, · · · , yK ]>. We have

y(t+ 1) = By(t) + ζ̃u(t).

Definition 4
For a given graph topology and clustering, a property (inter-cluster
separation) is said to be generic if for all most every coupling
coefficients and almost all initial values, the property holds.



Generical inter-cluster separation

Lemma 5
Suppose that the coupling matrix has the inter-cluster common
influence. Then, for any pair of cluster C1 and C2, either there are no
links from C2 to C1; or for each vertex v ∈ C1, there are at least one
link from C2 to v.

Theorem 6
Suppose that (1). G satisfies the condition in Lemma 5 w.r.t C; (2). the
(union) graph has cluster spanning trees. Then the linear system
realized (three items of) cluster synchronization generically.



Cluster transverse subspace

Let d = [d1, · · · , dm]> be a vector with di > 0 for all i = 1, · · · ,m.
Define an average state with respect to d in the cluster Ck as
x̄kd = 1∑

i∈Ck
di

∑
i∈Ck dix

i. Thus, we denote the projection of x on the

cluster synchronization manifold SC with respect to d as:
x̄d = [x̃1,>, · · · , x̃m,>]> withx̃i = x̄kd, if i ∈ Ck. Then, the
variations xi − x̄kd compose the transverse space:

T d
C = {u = [u1

>
, · · · , um>]> ∈ Rmn : ui ∈ Rn,

∑
i∈Ck

diu
i = 0, ∀ k = 1, · · · ,K}.

We have

Rmn = SC
⊕
T d
C !

Intra-cluster synchronization is defined as

PT d
C
x = 0(→ 0)!



Continuous-time case

ẋi = fp(x
i(t)) +

m∑
j=1

lijΓx
j , i ∈ Cp, p = 1, · · · ,K,

I Inter-cluster common influence:
∑

j∈Cq
lij is same for all

i ∈ Cp, p 6= q;
I there is α such that

(ξ − ζ)>
[
fk(ξ)− fk(ζ)− αΓ(ξ − ζ)

]
≤ −δ(ξ − ζ)>(ξ − ζ),

for all k = 1, · · · ,K.

Theorem 7
If there exists a positive definite diagonal matrix D such that[

D(L+ αIm)

]s∣∣∣∣
T d
C

≤ 0 (2)

holds, then the coupled dynamical system intra-cluster synchronizes.



Discrete-time case

xi(t+ 1) =

K∑
k=1

∑
j∈Ck

gijfp(x
j(t)), i ∈ Cp, p = 1, · · · ,K,

I Inter-cluster common influence:
∑

j∈Cq
gij is same for all

i ∈ Cp, p 6= q;
I ‖Dfp(·)‖ ≤ κ.

Theorem 8
Let ρCT be the maximum eigenvalue (in modulus) of G in the cluster
transverse subspace T d

C . If

κρCT < 1.

then the coupled system intra-cluster synchronizes.



Chaos cluster synchronizibility

Theorem 9
For the coupled system (both continuous- and discrete-time cases),
suppose that the common inter-cluster coupling condition holds. For
some α > 0 (or κ > 1), the sufficient conditions can hold for some
realization of coupling coefficients if and only if the graph G has
cluster spanning trees.

On the contrary, if the graph does not have cluster spanning trees,
some cluster will have two disjoint sub-groups. This leads that
intra-cluster synchronization cannot be realized.



Inter-cluster separation

It should be assumed that the differences between fk for clusters are
distinct, which can guarantee that the trajectories are apparently
distinguishing even if each cluster synchronizes.



Undirected graph case

Let us consider the case of undirected graphs. Thus, intra-cluster
synchronization can be achieved (for some realization of couplings) if
and only if all vertices in the same cluster belongs to the same largest
connected component in the graph G. In summary, the following two
conditions play the key role in cluster synchronization.

1. Common inter-cluster edges for each vertex in the same cluster;

2. Communicability for each pair of vertices in the same cluster.



Schemes to clustering synchronize

A cluster is said to be communicable if for each pair of vertices in this
cluster, there exists at least one path between them. The paths between
vertices are composed of edges either inter-cluster or intra-cluster.

1. A self-organized cluster is a communicable cluster that is
communicable only via intra-cluster paths but not communicable
only via inter-cluster paths;

2. A driven cluster is a communicable cluster that is communicable
only via inter-cluster paths but not communicable only via
intra-cluster paths;

3. A mixed cluster is a communicable cluster that is communicable
either only via intra-cluster paths or only via inter-cluster paths;

4. A hybrid cluster is a communicable cluster that is communicable
neither only via intra-cluster paths nor only via inter-cluster
paths.



Example I

I the white cluster (vertex set 1− 3) is driven since they has no
intra-cluster edges;

I the red cluster (vertex set 4− 7) is mixed since each pari of
vertices can access each other via only inter- or intra- edges;

I the blue cluster is driven since each pair of vertices can access
each other via only the inter-cluster edges but can not
communicate only via intra-cluster edges.



Example II

I Each cluster of the white and blue clusters (vertex sets 1− 4 and
9− 12) is driven since each pair of vertices can access each other
only via inter-cluster edges but only has a single intra-cluster
edges;

I the red cluster (vertex set 5− 8) is recognized as a hybrid cluster
since the sets of inter- or intra-cluster edges are both necessary
for communication between each pair of vertices.



Example III

.

I Each The red and blue clusters (vertex sets 5− 8 and 9− 12) are
all driven since they do not have intra-cluster edges;

I The white cluster (vertex set 1− 4) is self-organized since each
pair of vertices can communicate via only the intra-cluster edges
but can not if removing the intra-cluster edges.



Case study

Consider two graph models:
I p-nearest- neighborhood regular graph: The graph has N nodes,

ordered by {1, · · · , N}. Each node i has 2r neighbors:{(i+ j)
mod N : j = ±1, · · · ,±r}, where mod denotes modular
operator. We divide the nodes into K groups: Ck = {i : i
mod K = k}, k = 0, · · · ,K − 1, where N mod K = 0;

I bipartite random graph: We divide N (an even integer) nodes
into two groups and each group has N/2 nodes. Each node has
m neighbors, among which there are s < m neighbors in the
same group and the remaining in another group. The neighbors
are chosen with equal probability.



Dynamic network system

There are two groups and the equations are:

ẋi =

m∑
j=1

lijx
j(t) + Ip(t), i ∈ Cp, p = 1, 2.

Ip(t) = αpsin(t), p = 1, 2.

Measurements:
I Intra-cluster synchronization:

∆C(x(t)) = max
p

max
i,i′∈Cp

|xi(t)− xi′(t)|

I Inter-cluster separation:

ηC(x(t)) = max
i∈Cp,j∈Cq ,p 6=q

|xi(t)− xj(t)|



Simulation results

Graph model 1:

Graph model 2:



Nonlinear node dynamics

Three graphs are mentioned above. The equations are:

ẋi = fp(x
i(t)) +

m∑
j=

lijΓx
j , p ∈ Cp,

with

fk(u) =


10(u2 − u1)
8

3
u1 − u2 − u1u3

u1u2 − bku3

for b1 = 28 for the white cluster, b2 = 38 for the red cluster, and
b3 = 58 for the blue cluster.



Graphs



Simulation Results: intra-cluster synchronization



Simulation Results: inter-cluster separation



Conclusions

I Cluster synchronization is defined by two aspects: intra-cluster
synchronization and inter-cluster separation;

I Cluster synchronization problem is transformed to the stability
analysis of the cluster consensus subspace under inter-cluster
common influence condition.

I The separation among states in different clusters are guaranteed
by inter-cluster non-identical node dynamics.

I The communicability between agents in the same cluster
(possibly via intra-cluster or inter-cluster links ) is a doorsill for
the complete intra-cluster synchronization.

I Two schemes to realize intra-cluster synchronization:
self-organization and driving.

I The latter scheme implies that cluster synchronization can be
realized in a non-clustered networks.
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