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Multi-Agent Systems (MAS)

Agents in microcosmic level
Distributed/Autonomous
Local/Global interactions
Neighbors may be dynamic 
May have no physical connections

Collective behavior in macroscopic level
e.g., clustering, phase transition, pattern, formation, 

swarm intelligence, consensus, aggregation, …

Bacteria Colony Ant Colony Robot Football Stock Market  



（A  Basic  Model）

From Local Interaction Rules     
to                             

Collective Behavior



makes decision according to local 
information;
has the tendency to behave as other 
agents do in its neighborhood.

Basic Assumptions
Each agent



Multi-Agent Model
http://angel.elte.hu/~vicsek/http://angel.elte.hu/~vicsek/
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A bird’s Neighborhood

Alignment: steer towards the 
average heading of neighbors

xi(t) :  position of agent i (xi(t) is a 2D vector)

v:   the constant speed of birds
r:   radius of neighborhood 

:)(tiθ heading of agent i

τθθ ))(sin),((cos)()1( ttvtxtx iiii +=+

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∑
∈

∑
∈

=+

)(
)(cos

)(
)(sin

arctan)1(

tiNj
tj

tiNj
tj

ti θ

θ

θ

{ }rtxtxjtN jii <−= )()(:)(

Neighbor  Graph 

r

x
i



Multi-Agent Model
http://angel.elte.hu/~vicsek/http://angel.elte.hu/~vicsek/

r

A bird’s Neighborhood

Alignment: steer towards the 
average heading of neighbors

xi(t) :  position of agent i (xi(t) is a 2D vector)

v:   the constant speed of birds
r:   radius of neighborhood 

:)(tiθ heading of agent i

τθθ ))(sin),((cos)()1( ttvtxtx iiii +=+

)(tan)(~)1(tan ttPt θθ =+

{ })(~)(~ tptP ij=where the weighted adjacency matrix

⎪
⎩

⎪
⎨

⎧
= ∑ ∈

otherwise

jiif
t

t
tp

tNj j

j

ij
i

0

~
)(cos

)(cos
)(~

)(
θ

θ
is defined as



Multi-Agent Model
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r

A bird’s Neighborhood

Alignment: steer towards the 
average heading of neighbors

xi(t) :  position of agent i (xi(t) is a 2D vector)

v:   the constant speed of birds
r:   radius of neighborhood 

:)(tiθ heading of agent i

This model can 
⎯ be applied to investigate properties 
of non-equilibrium systems
⎯be regarded as a simplified Boid
model for flocking behavior
⎯exhibit some kind of cooperative 
behavior called synchronization
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Q: How do we analyze the 

synchronization behavior?



Interaction and Evolution

(1) Positions and headings are strongly coupled
(2) Neighbor graphs may change with time
(3) The dynamical behavior of all agents is determined by 
the initial states of all agents and model parameters v and r

θ (0) θ (1) θ (2) θ (t-1) θ (t)

x(1) x(2) x(t-1) x(t)x(0)

G(0) G(1) G(2) G(t-1)

…… ……

…………

Interaction between positions and headings



Towards a Mathematical Theory
A  Stochastic Framework

The initial position and heading of all agents are mutually 
independent, with positions uniformly and independently 
distributed in the unit square, and headings uniformly and 
independently distributed in                     with ).,0( πε ∈),( επεπ −+−

Remark: In the stochastic framework, the restriction            on the headings 
can be replaced by                   with any constant   , on which the uniform 
distribution assumption of the headings can also be replaced by any other 
distributions. Moreover,        may lead to difficulties in guaranteeing 
synchronization,  the following counterexample will give us some clue on this.

),( επεπ −+−
)2,( επαα −+ α
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Random Geometric Graph

Geometric Graph G(V, r) :

Random geometric graph           :
are  i.i.d. random vectors.

( , )nG V r
}1,{ nixi ≤≤

M.Penrose, Random Geometric Graphs, Oxford 
University Press,2003.
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Connectivity of  
Random Geometric Graphs

The graph              with                           is connected   

with probability one as               if and only if
n

ncnnr
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( , ( ))G n r n
But this result is 

for static graphs !

( P.Gupta, P.R.Kumar,1998 )



Connectivity of 
Nearest-Neighbor Graph

NNG :  Each node is connected with 
the       nearest neighbors.

Theorem (F.Xue, P.R.Kumar, 2004)

),( nMnG

nM

For to be asymptotically connected,               

neighbors are necessary and sufficient.
)(lognMn Θ=

),( nMnG



Some Key Points                         
in Theoretical Analysis 

How to deal with changes of the neighbor 
graphs ? 

How to estimate the synchronization rate?

How to deal with matrices with increasing 
dimension ?

How to deal with the inherent nonlinearity?



),,,( 21 nddddiagT L=

iiiii ddddnid min,max,,,1, minmax === L

1P T A−=

Degree:

Average matrix:
Degree matrix:

Laplacian: ATL −=

Adjacency matrix:
⎩
⎨
⎧

=
0
1

ija
If  i ~ j

Otherwise
},{ ijaA

Some Basic Concepts
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Normalized Laplacian：
maxSpectral gap：



Dealing with changes of neighbors
(1)Stability of time-varying systems (L. Guo, 1994)

(2)Estimating the number of agents in a ring
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Some Key Points                         
in Theoretical Analysis 

How to deal with changes of the neighbor 
graphs? 

How to estimate the synchronization rate?

How to deal with matrices with increasing 
dimension?

How to deal with the inherent nonlinearity?



Synchronization Rate:
The estimation of spectral gap

Normalized Laplacian: 2/12/1 −− LTT

1100 −≤≤≤= nλλλ LSpectrum :

( )11 1,1max −−−= nλλλSpectral gap:
Rayleigh quotient
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Analysis of Matrices with  
Increasing Dimension

Estimation of double-array martingales
(Guo,1990, Huang&Guo,1990)
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Dealing with Inherent Nonlinearility

Under some mild condition on the speed 
and radius, we have for large n,
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By applying system structure and estimation of 
some characteristic on the initial states, we 
can deal with the inherent nonlinearility.



For any given model parameters v 
>0 and r >0,  the MAS will 
synchronize almost surely, when 
the number of agents n is large .

Result 1: High Density Implies 
Synchronization 



Result 2: High density with short 
distance interaction

Theorem: If the neighborhood radius and the speed 
satisfy the following condition:

Then for large population,  the MAS will again 
synchronize almost surely.   
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Intuitively, when the number of agents increases, the interaction 
radius can be allowed to decrease with the number of agents, so 
does the moving speed. Under such a situation, what conditions are 
needed for synchronization?



Result 3: Synchronization of the 
three dimensional model

Three dimensional model seems more practical to 
simulate the motion of animals, such as birds and fish.

Position:

Heading:

A key issue in the synchronization analysis is to deal with 
the decaying rate of the non-homogeneous term.



Results 3: Synchronization of the 
three dimensional model

Theorem: Under the stochastic framework, if the 
speed and the radius satisfy

Theorem: For any given model parameters v>0 
and r>0, the three dimensional model can 
reach synchronization when the number of 
agents is large.

( ),,1log 37
3

nnn rOvrn
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Then the three dimensional model will synchronize 
almost surely for large n.

Submitted to IEEE Trans. Auto. Control, 2010



The graph              with                           is connected   

with probability one as               if and only if
n

ncnnr
π

)(log)( +
=( , ( ))G n r n

.)( ∞→nc
∞→n

( , ( ))G n r n
But this result is 

for static graphs !

( P.Gupta, P.R.Kumar,1998 )

Result 4: The smallest possible 
interaction radius for synchronization



Theorem Suppose that the n agents are initially i.i.d. in 
[0, 1]2, and that  the radius satisfies

If                            then the simplified system will 
synchronize w.h.p. for all initial headings and sufficiently 
large n. 

Remark: If the radius satisfies

then w.h.p. there exist some initial headings such that the 
system can not reach synchronization for any speed. 

Result 4: The smallest possible 
interaction radius for synchronization

G. Chen, Z. X. Liu, L. Guo, Accepted by SIAM 2012.
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Theorem Suppose that the n agents are initially i.i.d. in 
[0, 1]2, and that  the radius satisfies

If                            then the simplified system will 
synchronize w.h.p. for all initial headings and sufficiently 
large n. 

Remark: If the radius satisfies

then w.h.p. there exist some initial headings such that the 
system can not reach synchronization for any speed. 

Result 4: The smallest possible 
interaction radius for synchronization

G. Chen, Z. X. Liu, L. Guo, Accepted by SIAM 2012.

In probability sense, the supercritical 
connectivity radius of G0 can be regarded as the 
smallest possible radius for synchronization.
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Theorem: If the number of agents’ neighbors is 
proportional to the population size n, then for any 
speed v, the system will synchronize almost surely 
provided that n is large enough.

Result 5: Synchronization of MAS
with M-Nearest-Neighbor Rule

C. Chen. G. Chen, L. Guo,  CCC, 2011

Experiments show that in some biological systems, the 
agents interact with a fixed number of neighbors.          
(see,  M. Ballerini, et al, PNAS, 2008)
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For the MAS, the dynamical behavior of the agents is 
determined by the initial states and model parameters.

The behavior resulting from self-organization may 
not be what we expect.

In many practical situation, we need to guide the 
system to the desired behavior.

Adding “information” agents (called leaders) may be 
a feasible and easily manipulated way. 

Intervention of Multi-Agent Systems

Why we need to intervene the MAS?



Key features of the leader-follower model:
Not to change the local rule of the existing agents;
Add some (not very few) “information” agents – called 

“leaders”, to  control or intervene; the existing agents treat 
them as ordinary agents.
What we can control is the proportion/number of leaders.
Open loop intervention

Intervention of MultiIntervention of Multi--Agent SystemsAgent Systems

Leader agent

Ordinary agent



Intervention by LeadersIntervention by Leaders

In some biological systems, a small 
number of agents have pertinent information 
about the destination, they can help induce 
the whole group.

The larger the population size, the smaller 
the proportion of leaders is needed to guide 
the system.

Couzin et al.,  Nature, Vol 433, p513-515, 2005

N. C. Makris, et al., Science, Vol. 323, P1734-1737, 2009

Experiments on vast oceanic fish shoals show that small sets of leaders 
significantly influence the actions of much larger groups.



Intervention by LeadersIntervention by Leaders

In some biological systems, a small 
number of agents have pertinent information 
about the destination, they can help induce 
the whole group.

The larger the population size, the smaller 
the proportion of leaders is needed to guide 
the system.

Couzin et al.,  Nature, Vol 433, p513-515, 2005

N. C. Makris, et al., Science, Vol. 323, P1734-1737, 2009

Experiments on vast oceanic fish shoals show that small sets of leaders 
significantly influence the actions of much larger groups.

How many leaders are needed 
for the desired behavior?



Remark: Suppose that the model parameters and the proportion of 
leaders satisfy

Then the leaders can not guide the followers to the expected direction 
almost surely when the population size is large enough.

Intervention by LeadersIntervention by Leaders

Z.X.Liu, J. Han, X. M. Hu, Automatica, 2011

Theorem:  Let the proportion of leaders       satisfies

where n is the size of the population. Then all agents will 
move with the same expected direction eventually.
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To answer the above issue, we focus on the intervention of the Vicsek
model, and proved the following results:
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Concluding Remarks
In this talk, 

We presented synchronization analysis of MASs
under stochastic framework with large population

Our conditions for synchronization only depend on 
the initial states and model parameters without 
resorting to any dynamical properties of the system.

We quantitatively investigated the intervention of 
MAS by adding leaders, and provide the proportion of 
leaders needed for the expected consensus.



Concluding Remarks
Analysis of collective behavior

How to analyze other collective behavior, for example, 
synchronization of the coupled oscillators and the coupled 
laser array, phase transition of the Vicsek model, flocking 
behavior of the Boid model?
Unified tools and methods to analyze the MAS
……

Intervention of MAS
Critical number of leaders to guide the MAS.
How to intervene other MAS, such as people in panic, 
transport systems?
How to formulate a theoretical framework for intervention?
……



Thank You!
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